
PLATINUM® DDL

www.DanaherMotion.com

Direct Drive Linear Motors

A new dimension in performance with higher throughput, accuracy and zero maintenance.

- ZERO maintenance
- No ball screws, gearboxes, rack & pinions, belts/pulleys
- Zero backlash and compliance
- High stiffness
- High positional accuracy
- Compact mechanical assembly
- Reduced parts count in machine
- Very smooth velocity
- Quiet operation

KOLLMORGEN

The Direct Drive Linear (DDL) Story

What is direct drive? Very simply it is the direct coupling of a linear motor (such as the Kollmorgen PLATINUM® DDL) to the driven load. With this configuration, all mechanical transmissions, such as ball/lead screws, rack & pinions, belts/pulleys, and gearboxes are eliminated. This in turn eliminates backlash and compliance and other problems associated with these mechanical transmissions.

The DDL Benefits:

- ZERO maintenance
- No ball screws, gearboxes, rack & pinions, belts/pulleys
- Zero backlash and compliance
- High stiffness
- High positional accuracy
- Compact mechanical assembly
- Reduced parts count in machine
- Very smooth velocity
- Quiet operation

The PLATINUM DDL linear motor line provides a new dimension in performance with higher throughput, accuracy, and zero maintenance.

Kollmorgen PLATINUM DDL

Kollmorgen supplied its first linear motors in the late 1970's for use in precision X-Y tables and coating systems. These were brush DC motors using the Kollmorgen patented push-through commutator bar method. This led to development in the early 1980's of the brushless versions of the linear motor which were used in film processing applications where smooth, high stiffness, linear motion was required. During the past 10 years, advances in permanent magnet material, power semiconductors, and microprocessor technology have been the enablers for increased performance and lower costs for linear motors.

These developments have been refined into the Kollmorgen PLATINUM DDL product line of easily applied, cost effective linear motor components. The product line consists of two fundamental constructions, Ironless and Ironcore. The Ironless motors have no attractive force between the frameless components and have Zero cogging for ultra smooth motion. The Ironcore motors provide the highest force per frame size. They feature a patented anti-cogging design which yields extremely smooth operation from these high force motors.

633 • 3400

Standard Features:

Ironless:

- Peak force 60 to 1600 N (13.6 to 360 lbf)
- Continuous force 21 to 450 N (4.6 to 101 lbf)
- Zero cogging
- Zero attractive force
- Smooth motion for speed as low as 1 micron/second (0.00004 in/sec)
- Low mass coil assembly for high acceleration

Ironcore:

- Peak force IC series: 190 to 15625 N (43 to 3513 lbf)
- Continuous force IC series: 73 to 12023 N (16 to 2703 lbf)
- Peak force ICD series: 170 to 1130 N (38 to 254 lbf)
- Continuous force ICD series: 57 to 315 N (13 to 71 lbf)
- Patented anti-cogging technique for minimal cogging without magnet skewing
- High motor constant (Km)
- High force density
- ICD Series Advantage:
 - Very low profile
 - Low attraction force
 - Suitable to replace many Ironless applications

All Motors:

- Zero contact, zero maintenance, brushless design
- 3 phase sinusoidal commutation
- Peak accelerations easily above 10 g's
- High position accuracy and resolution
- Very low settling time
- Low thermal losses
- Modular magnet design

Standard Options:

- Hall effect feedback
- Thermal protection
 - Thermistor
 - Thermostat (Ironcore)
- Supplemental air or water cooling (Ironcore)
- Cable options
- Magnet way covers for easy cleaning (Ironcore)
- FM approved, hazardous environment

DANAHER MOTION is a registered trademark of Danaher Corporation. Danaher Motion makes every attempt to ensure accuracy and reliability of the specifications in this publication. Specifications are subject to change without notice. Danaher Motion provides this information 'AS IS' and disclaims all warranties, express or implied, including, but not limited to, implied warranties of merchantability and fitness for a particular purpose. It is the responsibility of the product user to determine the suitability of this product for a specific application. @2004 Danaher Motion.

Tel

How to Use this Data Publication

This data publication makes the selection of a high performance linear motor simple! It includes a wide variety of linear motor components and cables that will adapt to your application needs. The linear motor selection guide at the back of this book is organized to lead you to the right motor quickly. The magnet ways for the Ironless, ICD and Ironcore motors are presented at the end of their respective sections so you can match any coil with any length of magnet assembly. To complete your sizing, use the model number ordering sheet at the back of this publication to build your part number as you size the motor.

Easy Selection process:

- Determine peak and continuous force required for your applications (see our applications section on pages 60-64 or use MOTIONEERING®, Danaher Motion's sizing and selection software)
- 2. Use the motor selection guide on pages 65 and 66 of this Data Publication to choose your motor
- 3. Refer to the appropriate pages in the data publication for technical details
- 4. Build model number for ordering using page 67

Kollmorgen PLATINUM DDL Motors are Manufactured under one or more of the following patents: 4,369,383 4,644,199 4,749,921 5,910,691 5,411,808 5,519,266 5,642,013 6,160,327 WO 96/15574 and others.

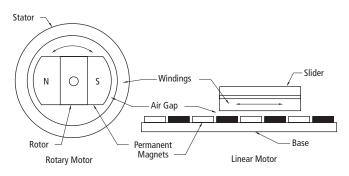
Kollmorgen PLATINUM DDL motors have been reviewed, tested, and found to be in conformity to the following standards: EN 60034, EN 60204-1, IEC 34-1. Product has been reviewed per EN 60950, EN 60529, IEC 721-3, NEMA MG7, UL1004, UL547, and UL674.

The Kollmorgen PLATINUM DDL motors comply with the Low Voltage Directive 73/23/EEC for installation in a machine. Safety depends upon installing and configuring Motor per the manufacturer's recommendations. The machine in which this product is to be installed must conform to the provisions of EC directive 89/336/EEC. The installer is responsible for ensuring that the end product complies with all the relevant laws in the country where the equipment is installed.

The Data Publication is organized in the following sections:

Linear Motor Technology	Pages 4-5
Ironless technical data electrical/mechanical specifications mechanical outlines of coil assemblies	6-14
Ironless magnet ways technical data mechanical outline of magnet ways typical installation of magnet assemblies	14-17
ICD technical data electrical/mechanical specifications mechanical outlines of coil assemblies	18-24
ICD magnet ways technical data mechanical outline of magnet ways typical installation of magnet assemblies	22-24
Ironcore technical data (non-cooled) electrical/mechanical specifications mechanical outlines of coil assemblies	25-39
Ironcore technical data (water cooled) electrical/mechanical specifications mechanical outlines of coil assemblies	40-53
Ironcore magnet ways technical data mechanical outlines of magnet ways typical installation of multiple magnet ways	54-56
High Flex Cable Sets and Ordering Information	57-58
Motor Wiring and Phasing diagrams	59
Application Sizing Information	60-64
Linear Motor Selection Charts	65-66
Model Numbering System for Coils, Hall Effects, Magnet Ways, and Ordering Information	67

DANAHER MOTION is a registered trademark of Danaher Corporation. Danaher Motion makes every attempt to ensure accuracy and reliability of the specifications in this publication. Specifications are subject to change without notice. Danaher Motion provides this information "AS IS" and disclaims all warranties, express or implied, including, but not limited to, implied warranties of merchantability and fitness for a particular purpose. It is the responsibility of the product user to determine the suitability of this product for a specific application. @2004 Danaher Motion.


633 • 3400

Tel

540

What is a Linear Servomotor?

The Kollmorgen PLATINUM® DDL Series motors are frameless permanent magnet, three phase brushless servomotors. Fundamentally, a linear motor is a rotary motor that is rolled out flat.

Rotary Motor Rolled Out Flat

The two primary components of permanent magnet brushless rotary motors are the stator (primary coils) and the rotor (secondary or rotating magnets). In brushless linear motors the rotor is rolled out flat to become the magnet track (also called the magnet way). The primary coils of the rotary motor are rolled out flat to become the coil assembly (also sometimes called the slider). In most brushless linear motor applications it is typical for the magnet way to be stationary and the coil assembly to be in motion, because of the relative masses of the two components. But it is also perfectly

acceptable and sometimes advantageous to reverse this arrangement. The basic electromagnetic operating principles are the same in either case and are identical to those of a rotary motor.

Two types of linear motors are available, Ironcore and Ironless. Each one provides characteristics and features that are optimal depending upon the application. Ironcore motors have coils wound on silicon steel laminations, to maximize the

Tel

: 540

generated force, with a single sided magnet way. Using a patented electromagnetic design, Kollmorgen PLATINUM DDL linear motors have the highest rated force per size, a high Km motor constant (equals low thermal losses), and low cogging forces without the need for skewing of the magnets. The high thrust forces possible with these motors make them ideal for accelerating and moving high masses, and maintaining stiffness during machining or process forces. Ironless motors have no iron, or slots for the coils to be

633 • 3400

wound on. Therefore, these motors have zero cogging, a very light mass, and absolutely no attractive forces between the coil assembly and the magnet way. These characteristics are ideal for applications requiring very low bearing friction, high acceleration of lighter loads, and for maximizing constant velocity, even at ultra low speeds. The modular magnet ways consists of a double row of magnets to maximize the generated thrust force and to provide a flux return path for the magnetic circuit.

Feedback Types:

All brushless motors require feedback for commutation. The conventional rotary motor typically utilizes a resolver mounted on the rear of the motor or Hall effect devices mounted integrally in the coil windings. For a linear motor, commutation feedback can also be accomplished with a variety of methods. Digital or linear Hall effect devices are available from Kollmorgen for the PLATINUM DDL series which allow the drive electronics to commutate the linear motors in a manner identical to rotary motors.

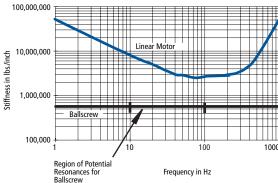
For exceptionally smooth motion requirements, sinusoidal drive electronics such as the Kollmorgen ServoStar® series, using digital Hall effects, provide sinusoidal drive currents to the motor for the best constant force and velocity performance. As an alternative, it is

Ironcore Motor

typical for linear motor applications to have a linear encoder present in the system for position feedback. It is increasingly common today for drive amplifiers, such as the Kollmorgen ServoStar Digital amplifier, to derive the necessary commutation information directly from this linear encoder, either with or without supplemental digital Hall effect devices on startup. Other types of feedback used on linear motor applications include linear Inductosyns, laser interferometers, and LVDT's.

DANAHER MOTION is a registered trademark of Danaher Corporation. Danaher Motion makes every attempt to ensure accuracy and reliability of the specifications in this publication. Specifications are subject to change without notice. Danaher Motion provides this information "AS IS" and disclaims all warranties, express or implied, including, but not limited to, implied warranties of merchantability and fitness for a particular purpose. It is the responsibility of the product user to determine the suitability of this product for a specific application. Second Danaher Motion.

www.DanaherMotion.com


Web site :

Advantages of Linear motors:

High Stiffness

In a linear motor system the motor is connected directly to the moving load. Therefore, there is no backlash and practically no compliance between the motor and the load. When the motor moves the load moves instantly. Shown in the graph is a comparison showing the very high dynamic stiffness of a Kollmorgen ironcore linear motor vs. a typical ground ball screw.

Ironcore model 22-100 Stiffness vs. Ballscrew

Wide Speed Range

Since the frameless parts of the linear motor are non-contact, and no limitations of a mechanical transmission are present, both very high speeds and very low speeds are easily obtainable. Speeds are truly not limited by the motor. Instead, by eliminating the mechanical transmission, speed becomes limited by other elements in the system such as the linear bearings, and the achievable bandwidth from any feedback devices. Application speeds of greater than 5 meters per second (200 in./sec.) or less than 1 micron per second (.00004 in./sec.) are typically achievable. In comparison, mechanical transmissions such as ball screws are commonly limited to linear speeds of 0.5 to 0.7 meters per second (20-30 in./sec.) because of resonances and wear. In addition to a wide speed range, linear motors, both ironcore and ironless, have excellent constant velocity characteristics, typically better than \pm 0.01% speed variation.

High System Dynamics

In addition to high speed capability, direct drive linear motors are capable of very high accelerations. Limited only by the system bearings, accelerations of 3 to 5g's are quite typical for the larger motors and accelerations exceeding 10g's are easily achievable for smaller motors.

Smooth Operation and Positional Accuracy

Both ironless and ironcore motors exhibit very smooth motion profiles due to the inherent motor design of the Kollmorgen PLATINUM® DDL series. Cogging, which is a component of force, is greatly reduced in the ironcore designs and is zero in the ironless designs. As a result, these direct drive linear motors provide very low force and velocity ripple for ultra smooth motion. Positioning accuracies are limited only by the feedback resolution, and sub-micron resolutions are commonly achievable.

Unlimited Travel

Kollmorgen Platinum DDL series magnet ways are made in 5 modular sections: 64mm, 128mm, 256mm, 512mm and 1024mm long. Each module can be added in unlimited numbers to any other module to allow for unlimited travel. Whether the travel required is 1 millimeter (0.04 inches) or 100 meters (330 feet), the PLATINUM DDL series can accommodate the need.

No Wear or Maintenance

Linear motors have few components, therefore the need for ball screw components such as nuts, bearing blocks, couplings, motor mounts and the need to maintain these components have been eliminated. Very long life and clean operation, with no lubrication or maintenance of these parts are the result.

Integration of Components is Much Simpler

Frameless linear motors require much fewer components than rotary motors with mechanical transmissions. A 0.8mm airgap (0.031 inches) for the ironcore design and 0.5mm airgap (0.020 inches) for the ironless design is the only alignment of the frameless linear motor components that is necessary. No critical alignments are required as with ball screws. Straightness of travel as provided by the system linear bearings is more than sufficient for the Kollmorgen linear motors.

Typical Applications for Linear Motors Include:

Machine Tool Drilling Milling	Measurement/Inspection Coordinate Measurement Machines Electronic Assembly
Grinding	Pick-and-place machines
Laser cutting	Component insertion
Cam grinding	Screen printers
Semiconductor	Adhesive dispensers
Wafer handling process	PC board inspection, drilling
Wafer inspection	
Wafer slicing	Other applications include:
Tab bonding	Flight Simulators
Wire bonding	Acceleration sleds
lon implantation	Catapult
Lithography	G-Force measurement
Textile	
Carpet tufting	

DANAHER MOTION is a registered trademark of Danaher Corporation. Danaher Motion makes every attempt to ensure accuracy and reliability of the specifications in this publication. Specifications are subject to change without notice. Danaher Motion provides this information "AS IS" and disclaims all warranties, express or implied, including, but not limited to, implied warranties of merchantability and fitness for a particular purpose. It is the responsibility of the product user to determine the suitability of this product for a specific application. @2004 Danaher Motion.

633 • 3400

Web site

:

Tel

540

06 Series Ironless - Non-cooled

Rated Performance	Symbol	Units	IL06	-015	IL06	-030	IL06	-050	IL06	-075	IL06	-100
Peak force	Fp	N	6	0	12	20	20	00	30	00	4	00
		lbf	13	.6	2	27	4	5	6	8	g	0
Continuous force @ Tmax	Fc	N	2	1	3	8	61		87		1	13
see note 1		lbf	4.	4.6		9		4	19		2	.5
Motor constant @ 25°C	Km	N/√W	3.	3.3		.6	8	.0	10).2	12.1	
Max. Cont. power dissipation	Pc	W	53		6	i5	8	3	10	01	1	21
Electrical Specifications												
		Winding Code	A1	A4	A1	A4	A1	A4	A1	A4	A1	A4
Peak current	lp	Arms	7.2	14.4	7.1	14.2	7.0	14.0	7.0	14.0	7.0	14.0
Continuous Current @ Tmax	lc	Arms	2.5	4.9	2.3	4.5	2.1	4.3	2.0	4.1	2.0	4.0
Electrical resistance @ 25°C±10%	Rm	Ohms L-L	4.2	1.1	6.1	1.5	8.6	2.2	11.7	2.9	14.7	3.7
Electrical inductance ±20%	L	mH L-L	0.50	0.13	1.30	0.33	3.00	0.75	5.00	1.25	7.00	1.75
Back EMF constant @ 25°C±10%	Ke	Vpeak/m/s L-L	6.9	3.4	13.7	6.9	23.3	11.6	34.9	17.5	46.5	23.3
		Vpeak/in/sec L-L	0.17	0.09	0.35	0.17	0.59	0.30	0.89	0.44	1.18	0.59
Force constant @25°C±10%	Kf	N/Arms	8.4	4.2	16.8	8.4	28.5	14.3	42.8	21.4	57.0	28.5
		lbf / Arms	1.9	0.9	3.8	1.9	6.4	3.2	9.6	4.8	12.8	6.4
Mechanical Specifications												
Coil Assembly Mass ±15%	Mc	kg	0.	23	0.	27	0.	32	0.	38	0.	45
		lbs	0	.5	0	.6	0.7		0.8		1.0	
Magnetic Way Type			М	W	М	W	MW		MW075		MW100	
			015	015T	030	030L	050	050L				
Magnetic Way Mass ±15%	Mw	kg/m	5.1	4.2	9.4	7.3	12.2	10.2	18	8.9	27	.3
		lb/in	0.28	0.23	0.51	0.40	0.68	0.56	1.0	05	1.	51
Figures of Merit & Additional	Data											
Electrical time constant	Те	ms	0.	12	0.	.21	0.	35	0.4	43	0.	48
Max.Theoretical Acceleration	Amax	g's	26.8		45	5.2	63	3.6	80	0.6	90).7
Magnetic attraction	Fa	kN	0		0		0		(0	()
		lbf	(0		0	(0	(0	()
Thermal Resistance												
- coils to external structure	Rth	°C/Watt	1.	97	1.	61	1.26		1.04		0.	87
Max. Allowable Coil Temp.	Tmax	°C	13	30	13	30	13	30	13	30	130	

Notes:

 \oplus The motor continuous rated force is measured with the motor coils achieving the motor maximum allowable temperature Tmax. At this operating point the number of watts being dissipated by the coil assembly is equal to the maximum continuous power dissipation Pc. The heat load can be limited to a value below Pc by limiting the continuous rated output force of the motor to a value equal to:

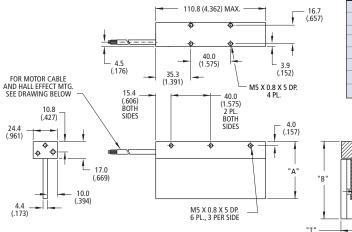
Fc = Km x Square Root (Pw); where Pw = the acceptable heat load, in watts, and must be a value below Pc.

The RMS current needed to produce this force is simply Fc divided by the force constant Kf.
② Alternate windings can be made available. Please consult the Danaher Motion Customer Assistance Center for design options.

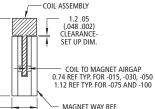
③ Maximum Theoretical Acceleration is based on the motors peak force and the motor mass alone. Limitations due to such factors as the

additional mass of the load, the bearing type and design, the shock rating of the feedback, the peak current available from the amplifier etc. must be considered to determine the achievable acceleration in each application.

633 • 3400

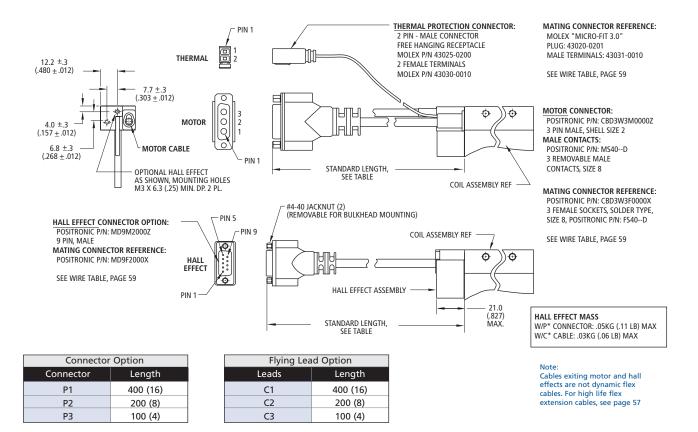

I Please see our Application Sizing pages in the back of this publication for more details on sizing and thermal considerations.

DANAHER MOTION is a registered trademark of Danaher Corporation. Danaher Motion makes every attempt to ensure accuracy and reliability of the specifications in this publication. Specifications are subject to change without notice. Danaher Motion provides this information "AS IS" and disclaims all warranties, express or implied, including, but not limited to, implied warranties of merchantability and fitness for a particular purpose. It is the responsibility of the product user to determine the suitability of this product for a specific application. @2004 Danaher Motion.



Tel

IL06-xxx


Motor Coil	Coil Width *.7 (0.027) "A"3 (0.012)	Typ. Assy. Width "B"±.6 (.024)	Typ. Assy. Height "T" ±.4 (.016)
IL06-015	42.30 (1.665)	52.10 (2.051)	25.40 (1.000)
IL06-015 T	42.30 (1.665)	52.10 (2.051)	21.80 (.858)
IL06-030	57.30 (2.256)	78.50 (3.091)	25.40 (1.000)
IL06-030 L	57.30 (2.256)	67.30 (2.650)	25.40 (1.000)
IL06-050	77.30 (3.043)	98.50 (3.878)	25.40 (1.000)
IL06-050 L	77.30 (3.043)	87.30 (3.437)	25.40 (1.000)
IL06-075	102.30 (4.028)	123.50 (4.862)	30.00 (1.181)
IL06-100	127.30 (5.012)	148.50 (5.846)	34.00 (1.339)

Notes: © Dimensions in mm (inches) © Tolerances unless otherwise specified: no decimal place ± 0.8 (.03) X decimal place ± 0.1 (.004)

X decimal place \pm 0.1 (.004) XX decimal place \pm 0.05 (.002)

Termination and Hall Effect Options

DANAHER MOTION is a registered trademark of Danaher Corporation. Danaher Motion makes every attempt to ensure accuracy and reliability of the specifications in this publication. Specifications are subject to change without notice. Danaher Motion provides this information "AS IS" and disclaims all warranties, express or implied, including, but not limited to, implied warranties of merchantability and fitness for a particular purpose. It is the responsibility of the product user to determine the suitability of this product for a specific application. ©2004 Danaher Motion.

633 • 3400

Web site

:

: 540

Tel

7

12 Series Ironless - Non-cooled

Rated Performance	Symbol	Units	IL12-015			L12-0	30		L12-05	0		_12-07	' 5	IL12	-100		
Peak force	Fp	N		120			240			400			600		80	00	
		lbf		27			54			90			135		18	30	
Continuous force @ Tmax	Fc	N		41			76			122			174		22	26	
see note 1		lbf		9		17			28		39			51			
Motor constant @ 25°C	Km	N/√W		4.8			7.8			11.3			14.5			17.2	
Max. Cont. power dissipation	Pc	W		107			131			167			202		24	12	
Electrical Specifications					1												
		Winding Code	A1	A2	A4	A1	A2	A4	A1	A2	A4	A1	A2	A4	A2	A4	
Peak current	lp	Arms	7.1	14.3	28.6	7.1	14.2	28.5	7.0	14.0	28.1	7.0	14.0	28.1	14.0	28.1	
Continuous Current @ Tmax	lc	Arms	2.4	4.9	9.8	2.3	4.5	9.0	2.1	4.3	8.6	2.0	4.1	8.1	4.0	7.9	
Electrical resistance																	
@ 25°C±10%	Rm	Ohms L-L	8.5	2.1	0.5	12.2	3.1	0.8	17.2	4.3	1.1	23.3	5.8	1.5	7.4	1.8	
Electrical inductance ±20%	L	mH L-L	1.00	0.25	0.06	2.60	0.65	0.16	6.00	1.50	0.38	10.00	2.50	0.63	3.50	0.88	
Back EMF constant	Ke	Vpeak/m/s L-L	13.7	6.9	3.4	27.5	13.8	6.9	46.5	23.3	11.6	69.8	34.9	17.5	46.5	23.3	
@ 25°C±10%		Vpeak/in/sec L-L	0.35	0.17	0.09	0.70	0.35	0.17	1.18	0.59	0.30	1.77	0.89	0.44	1.18	0.59	
Force constant @ 25°C±10%	Kf	N/Arms	16.8	8.4	4.2	33.7	16.9	8.4	57.0	28.5	14.3	85.5	42.8	21.4	57.0	28.5	
		lbf / Arms	3.8	1.9	0.9	7.6	3.8	1.9	12.8	6.4	3.2	19.2	9.6	4.8	12.8	6.4	
Mechanical Specification	IS																
Coil Assembly Mass ±15%	Mc	kg		0.35			0.42			0.52			0.65		0.	77	
		lbs		0.8		0.9		1.1		1.4			1.7				
Magnetic Way Type				MW			MW		MW		MW075		5	MW100			
			015	5 0	15T	03	0	030L	050) (050L						
Magnetic Way Mass ±15%	Mw	kg/m	5.1		4.2	9.4	4	7.3	12.2	2	10.2		18.9		27	7.3	
		lbs/in	0.2	8 0	.23	0.5	1	0.40	0.68	3	0.56		1.05		1.	51	
Figures of Merit & Addit	ional Data																
Electrical time constant	Те	ms		0.12			0.21			0.35			0.43		0.	48	
Max.Theoretical Acceleration	Amax	g's	35.0			58.2			78.4			94.1		10	6.0		
Magnetic attraction	Fa	kN	0			0			0			0		()		
		lbf	0			0		0			0		()			
Thermal Resistance																	
- coils to external structure	Rth	°C/Watt		0.984		0.804		0.629		0.519		0.433					
Max. Allowable Coil Temp.	Tmax	°C		130			130			130		130		130			

Notes:

0 The motor continuous rated force is measured with the motor coils achieving the motor maximum allowable temperature Tmax. At this operating point the number of watts being dissipated by the coil assembly is equal to the maximum continuous power dissipation Pc. The heat load can be limited to a value below Pc by limiting the continuous rated output force of the motor to a value equal to: Fc = Km x Square Root (Pw); where Pw = the acceptable heat load, in watts, and must be a value below Pc.

633 • 3400

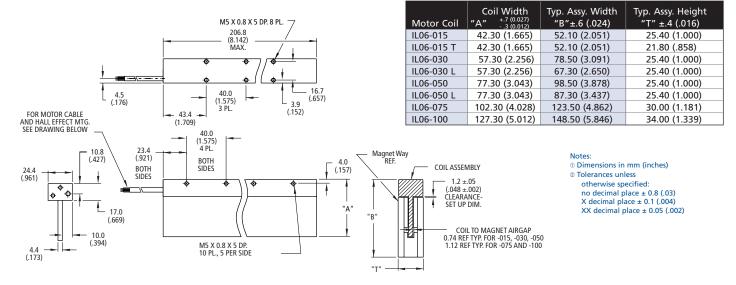
The RMS current needed to produce this force is simply Fc divided by the force constant Kf. a Alternate windings can be made available. Please consult the Danaher Motion Customer Assistance Center for design options.

③ Maximum Theoretical Acceleration is based on the motors peak force and the motor mass alone. Limitations due to such factors as the

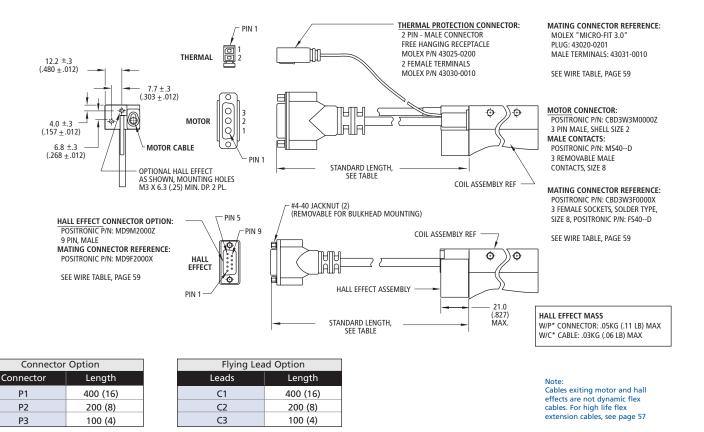
additional mass of the load, the bearing type and design, the shock rating of the feedback, the peak current available from the amplifier etc. must be considered to determine the achievable acceleration in each application.

Web site :

④ Please see our Application Sizing pages in the back of this publication for more details on sizing and thermal considerations.


DANAHER MOTION is a registered trademark of Danaher Corporation. Danaher Motion makes every attempt to ensure accuracy and reliability of the specifications in this publication. Specifications are subject to change without notice. Danaher Motion provides this information "AS IS" and disclaims all warranties, express or implied, including, but not limited to, implied warranties of merchantability and fitness for a particular purpose. It is the responsibility of the product user to determine the suitability of this product for a specific application. @2004 Danaher Motion.

www.DanaherMotion.com


Tel

Kollmorgen

IL12-xxx

Termination and Hall Effect Options

DANAHER MOTION is a registered trademark of Danaher Corporation. Danaher Motion makes every attempt to ensure accuracy and reliability of the specifications in this publication. Specifications are subject to change without notice. Danaher Motion provides this information "AS IS" and disclaims all warranties, express or implied, including, but not limited to, implied warranties of merchantability and fitness for a particular purpose. It is the responsibility of the product user to determine the suitability of this product for a specific application. @2004 Danaher Motion.

633 • 3400

Web site

: 540

Tel

18 Series Ironless - Non-cooled

Rated Performance	Symbol	Units	IL18-015					IL18	-030			IL18-	050		
Peak force	Fp	N		1	80			36	50			60	0		
		lbf		4	10			8	1			13	5		
Continuous force @ Tmax	Fc	Ν		6	52			11	4		184				
see note 1		lbf	14					2	6		41				
Motor constant @ 25°C	Km	N/√W		5.8				9.	7		13.8				
Max. Cont. power dissipation	Pc	W	160				19	96			25	1			
Electrical Specifications															
		Winding Code	A1	A2	A3	A4	A1	A2	A3	A4	A1	A2	A3	A4	
Peak current	lp	Arms	7.1	14.2	21.3	42.6	7.1	14.3	21.4	42.8	7.0	14.0	21.0	42.1	
Continuous Current @ Tmax	lc	Arms	2.4	4.9	7.3	14.7	2.3	4.5	6.8	13.6	2.2	4.3	6.5	12.9	
Electrical resistance															
@ 25°C±10%	Rm	Ohms L-L	12.7	3.2	1.4	0.4	18.2	4.6	2.0	0.5	25.7	6.4	2.9	0.7	
Electrical inductance ±20%	L	mH L-L	1.50	0.38	0.17	0.04	3.80	0.95	0.42	0.11	9.00	2.25	1.00	0.25	
Back EMF constant	Ke	Vpeak/m/s L-L	20.7	10.3	6.9	3.4	41.2	20.6	13.7	6.9	69.8	34.9	23.3	11.6	
@ 25°C±10%		Vpeak/in/sec L-L	0.52	0.26	0.17	0.09	1.05	0.52	0.35	0.17	1.77	0.89	0.59	0.30	
Force constant @ 25°C±10%	Kf	N/Arms	25.3	12.7	8.4	4.2	50.5	25.3	16.8	8.4	85.5	42.8	28.5	14.3	
		lbf/Arms	5.7	2.8	1.9	0.9	11.4	5.7	3.8	1.9	19.2	9.6	6.4	3.2	
Mechanical Specification	S														
Coil Assembly Mass ±15%	Mc	kg		0.	46			0.	57		0.72				
		lbs		1	.0			1.	.3		1.6				
Magnetic Way Type				М	w			M	w			М	w		
			0	15	01	5T	03	30	03	OL	05	50	05	0L	
Magnetic Way Mass ±15%	Mw	kg/m	5	.1	4	.2	9	.4	7	.3	12	2.2	10	.2	
		lbs/in	0.	28	0.	23	0.	51	0.	40	0.	68	0.	56	
Figures of Merit & Addit	ional Data														
Electrical time constant	Te	ms	0.12				0.2	21			0.	35			
Max.Theoretical Acceleration	Amax	g's	40.2				64	.5			84	.9			
Magnetic attraction	Fa	kN	0				C)			()			
		lbf	0				C)			()			
Thermal Resistance															
- coils to external structure	Rth	°C/Watt		0.6	56		0.536				0.419				
Max. Allowable Coil Temp.	Tmax	°C		13	30			13	0			13	30		

Notes:

The motor continuous rated force is measured with the motor coils achieving the motor maximum allowable temperature Tmax. At this operating point the number of watts being dissipated by the coil assembly is equal to the maximum continuous power dissipation Pc. The heat load can be limited to a value below Pc by limiting the continuous rated output force of the motor to a value equal to:

 $Fc = Km \times Square Root (Pw)$; where Pw = the acceptable heat load, in watts, and must be a value below Pc. The RMS current needed to produce this force is simply Fc divided by the force constant Kf.

2

633 • 3400

Alternate windings can be made available. Please consult the Danaher Motion Customer Assistance Center for design options.

③ Maximum Theoretical Acceleration is based on the motors peak force and the motor mass alone. Limitations due to such factors as the additional mass of the load, the bearing type and design, the shock rating of the feedback, the peak current available from the amplifier etc. must be considered to determine the achievable acceleration in each application.

I Please see our Application Sizing pages in the back of this publication for more details on sizing and thermal considerations.

DANAHER MOTION is a registered trademark of Danaher Corporation. Danaher Motion makes every attempt to ensure accuracy and reliability of the specifications in this publication. Specifications are subject to change without notice. Danaher Motion provides this information "AS IS" and disclaims all warranties, express or implied, including, but not limited to, implied warranties of merchantability and fitness for a particular purpose. It is the responsibility of the product user to determine the suitability of this product for a specific application. @2004 Danaher Motion.

Tel

18 Series Ironless - Non-cooled

Rated Performance	Symbol	Units		IL18	-075		IL18	-100					
Peak force	Fp	N		90	00			12	200				
		lbf		20)2		270						
Continuous force @ Tmax	Fc	N		26	50		338						
see note 1		lbf		5	9			7	76				
Motor constant @ 25°C	Km	N/√W		17	.7			2	1.0				
Max. Cont. power dissipation	Pc	W		30)3			3	63				
Electrical Specifications													
		Winding Code	A1	A2	A3	A4	A1	A2	A3	A4			
Peak current	lp	Arms	7.0	14.0	42.1	7.0	14.0	21.0	42.1				
Continuous Current @ Tmax	lc	Arms	2.0	4.1	6.1	12.2	2.0	4.0	5.9	11.9			
Electrical resistance													
@ 25°C±10%	Rm	Ohms L-L	35.0	8.8	3.9	1.0	44.2	11.1	4.9	1.2			
Electrical inductance ±20%	L	mH L-L	15.0	3.75	1.67	0.42	21.0	5.25	2.33	0.58			
Back EMF constant	Ke	Vpeak/m/s L-L	105	52.4	34.9	17.5	140	69.9	46.6	23.3			
@ 25°C±10%		Vpeak/in/sec L-L	2.66	1.33	0.89	0.44	3.55	1.77	1.18	0.59			
Force constant @ 25°C±10%	Kf	N/Arms	128	64.2	42.8	21.4	171	85.6	57.0	28.5			
		lbf/Arms	28.8	14.4	9.6	4.8	38.5	19.2	12.8	6.4			
Mechanical Specification	s												
Coil Assembly Mass ±15%	Mc	kg		0.	91		1.10						
		lbs		2	.0			2	.4				
Magnetic Way Type				MM	/075			MM	/100				
Magnetic Way Mass ±15%	Mw	kg/m		18	3.9			27	7.3				
		lbs/in		1.	05			1.	51				
Figures of Merit & Addit	ional Data												
Electrical time constant	Те	ms		0.	43			0.	48				
Max.Theoretical Acceleration	Amax	g's		1	01			1	11				
Magnetic attraction	Fa	kN		(0		0						
		lbf			0				0				
Thermal Resistance													
- coils to external structure	Rth	°C/Watt		0.	35		0.29						
Max. Allowable Coil Temp.	Tmax	°C		1	30			1.	30				

Notes:

① The motor continuous rated force is measured with the motor coils achieving the motor maximum allowable temperature Tmax. At this operating point the number of watts being dissipated by the coil assembly is equal to the maximum continuous power dissipation Pc. The heat load can be limited to a value below Pc by limiting the continuous rated output force of the motor to a value equal to: Fc = Km x Square Root (Pw); where Pw = the acceptable heat load, in watts, and must be a value below Pc.

The RMS current needed to produce this force is simply Fc divided by the force constant Kf.

2 Alternate windings can be made available. Please consult the Danaher Motion Customer Assistance Center for design options.
 3 Maximum Theoretical Acceleration is based on the motors peak force and the motor mass alone. Limitations due to such factors as the additional mass of the load, the bearing type and design, the shock rating of the feedback, the peak current available from the amplifier

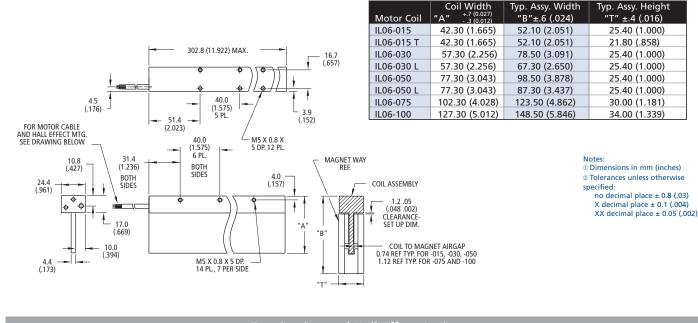
Tel

: 540

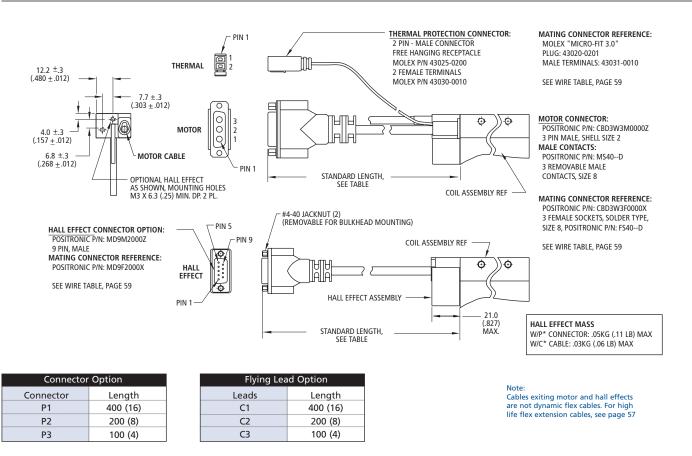
etc. must be considered to determine the achievable acceleration in each application. ④ Please see our Application Sizing pages in the back of this publication for more details on sizing and thermal considerations.

DANAHER MOTION is a registered trademark of Danaher Corporation. Danaher Motion makes every attempt to ensure accuracy and reliability of the specifications in this publication. Specifications are subject to change without notice. Danaher Motion provides this information "AS IS" and disclaims all warranties, express or implied, including, but not limited to, implied warranties of merchantability and fitness for a particular purpose. It is the responsibility of the product user to determine the suitability of this product for a specific application. @2004 Danaher Motion.

633 • 3400


Web site

:


www.DanaherMotion.com

11

IL18-xxx

Termination and Hall Effect Options

DANAHER MOTION is a registered trademark of Danaher Corporation. Danaher Motion makes every attempt to ensure accuracy and reliability of the specifications in this publication. Specifications are subject to change without notice. Danaher Motion provides this information "AS IS" and disclaims all warranties, express or implied, including, but not limited to, implied warranties of merchantability and fitness for a particular purpose. It is the responsibility of the product user to determine the suitability of this product for a specific application. @2004 Danaher Motion.

www.DanaherMotion.com

:

Web site

Tel

: 540

633 • 3400

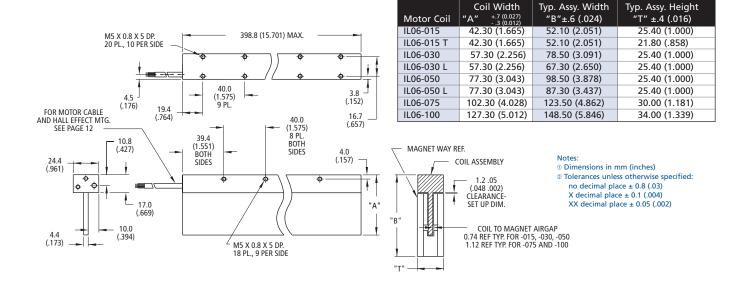
24 Series Ironless - Non-cooled

Rated Performance	Symbol	Units	IL	IL24-015		IL	24-03	30	IL	24-0	50		IL24	-075		IL24-100			
Peak force	Fp	Ν		240			480			800			12	00			1(600	
		lbf		54			108			180			27	70			3	60	
Continuous force @ Tmax	Fc	Ν		83		152		245		348			450						
see note 1)		lbf		19			34			55		78				101			
Motor constant @ 25°C	Km	N/√W		6.7			11.2			15.9			20	.6		24.4			
Max. Cont. power dissipation	Pc	W		213			261			333			40)5			4	84	
Electrical Specifications																			
		Winding Code	A1	A2	A3	A1	A2	A3	A1	A2	A3	A1	A2	A3	A4	A1	A2	A3	A4
Peak current	lp	Arms	7.1	14.2	28.4	7.1	14.2	28.5	7.0	14.0	28.1	7.0	14.0	28.0	56.1	7.0	14.0	28.1	56.1
Continuous Current @ Tmax	lc	Arms	2.4	4.9	9.8	2.3	4.5	9.0	2.1	4.3	8.6	2.0	4.1	8.1	16.3	2.0	3.9	7.9	15.8
Electrical resistance																			
@ 25°C±10%	Rm	Ohms L-L	16.9	4.2	1.1	24.3	6.1	1.5	34.3	8.6	2.1	46.6	11.7	2.9	0.73	58.9	14.7	3.7	0.92
Electrical inductance ±20%	L	mH L-L	2.00	0.50	0.13	5.10	1.28	0.32	12.0	3.00	0.75	20.0	5.00	1.25	0.31	28.0	7.00	1.75	0.44
Back EMF constant	Ke	Vpeak/m/s L-L	27.5	13.8	6.9	55.0	27.5	13.8	93.1	46.5	23.3	140	69.9	34.9	17.5	186	93.1	46.6	23.3
@ 25°C±10%		Vpeak/in/sec L-L	0.70	0.35	0.17	1.40	0.70	0.35	2.36	1.18	0.59	3.55	1.77	0.89	0.44	4.73	2.37	1.18	0.59
Force constant @ 25°C±10%	Kf	N/Arms	33.7	16.9	8.4	67.4	33.7	16.9	114	57.0	28.5	171	85.6	42.8	21.4	228	114	57.0	28.5
		lbf / Arms	7.6	3.8	1.9	15.2	7.6	3.8	25.6	12.8	6.4	38.5	19.2	9.6	4.8	51.3	25.6	12.8	6.4
Mechanical Specifications																			
Coil Assembly Mass ±15%	Mc	kg		0.57			0.72			0.92			1.1	17			1.	42	
		lbs		1.3			1.6			2.0			2.	6			3	.1	
Magnetic Way Type				мw			мw			мw			мw	075			MM	/100	
			015	5 0)15T	030	0	30L	05	0 ()50L								
Magnetic Way Mass ±15%	Mw	kg/m	5.1		4.2	9.4		7.3	12.	2	10.2		18	3.9			27	7.3	
		lbs/in	0.2	8 (0.23	0.5	1 0	.40	0.6	8	0.56		1.	05			1.	51	
Figures of Merit & Additiona	l Data																		
Electrical time constant	Те	ms		0.12			0.21			0.35		0.43			0.	48			
Max.Theoretical Acceleration	Amax	g's		42.9			68.0			88.7		105			1	15			
Magnetic attraction	Fa	kN		0 0		0 0		0											
		lbf	0			0		0				(D			(0		
Thermal Resistance																			
- coils to external structure	Rth	°C/Watt		0.49			0.40			0.32		0.26		0.22					
Max. Allowable Coil Temp.	Tmax	°C		130			130			130			13	30			13	30	

Notes:

 The motor continuous rated force is measured with the motor coils achieving the motor maximum allowable temperature Tmax. At this operating point the number of watts being dissipated by the coil assembly is equal to the maximum continuous power dissipation Pc. The heat load can be limited to a value below Pc by limiting the continuous rated output force of the motor to a value equal to: Fc = Km x Square Root (Pw); where Pw = the acceptable heat load, in watts, and must be a value below Pc. The RMS current needed to produce this force is simply Fc divided by the force constant Kf.

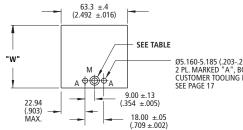
 ② Alternate windings can be made available. Please consult the Danaher Motion Customer Assistance Center for design options.
 ③ Maximum Theoretical Acceleration is based on the motors peak force and the motor mass alone. Limitations due to such factors as the additional mass of the load, the bearing type and design, the shock rating of the feedback, the peak current available from the amplifier etc. must be considered to determine the achievable acceleration in each application.
 Please see our Application Sizing pages in the back of this publication for more details on sizing and thermal considerations.

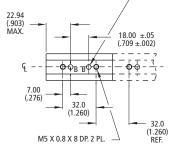

DANAHER MOTION is a registered trademark of Danaher Corporation. Danaher Motion makes every attempt to ensure accuracy and reliability of the specifications in this publication. Specifications are subject to change without notice. Danaher Motion provides this information "AS IS" and disclaims all warranties, express or implied, including, but not limited to, implied warranties of merchantability and fitness for a particular purpose. It is the responsibility of the product user to determine the suitability of this product for a specific application. @2004 Danaher Motion.

: 540

Tel

13


IL24-xxx

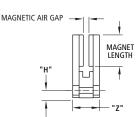

Ironless Magnet Ways

Magnet assemblies are modular and can be installed in multiples of same or alternate lengths (see page 17). Standard assembly lengths are shown below.

MWxxx-0064

Ø5.160-5.185 (.203-.204) X 10 (.394) DP. 2 PL. MARKED "B", CUSTOMER TOOLING HOLES, SEE PAGE 17 $$_{\rm 7}$$

Notes: 1) Dimensions in mm (inches) ② Tolerances unless otherwise specified: no decimal place \pm 0.8 (.03) X decimal place \pm 0.1 (.004)


XX decimal place \pm 0.05 (.002)

Tel

: 540

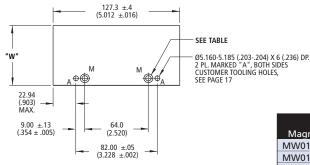
633 • 3400

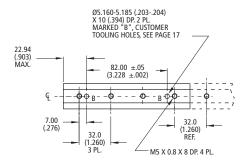
Ø5.160-5.185 (.203-.204) X 6 (.236) DP. 2 PL. MARKED "A", BOTH SIDES CUSTOMER TOOLING HOLES, SEE PAGE 17

Magnet Way	Magnet Size Ref.	"H" ± .08 (.003)	"W" ± .4 (.016)	"Z" ± .4 (.016)
MW015-0064	15mm	5.69 (.224)	33.80 (1.331)	25.40 (1.000)
MW015T-0064	15mm	5.69 (.224)	33.80 (1.331)	21.80 (.858)
MW030-0064	30mm	7.11 (.280)	60.20 (2.370)	25.40 (1.000)
MW030L-0064	30mm	5.69 (.224)	49.00 (1.929)	25.40 (1.000)
MW050-0064	50mm	7.11 (.280)	80.20 (3.158)	25.40 (1.000)
MW050L-0064	50mm	5.69 (.224)	69.00 (2.716)	25.40 (1.000)
MW075-0064	75mm	8.23 (.324)	105.20 (4.142)	30.00 (1.181)
MW100-0064	100mm	8.23 (.324)	130.20 (5.126)	34.00 (1.339)

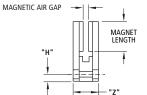
		Hardware	e (Hex, Socket	Head Ca	ıp)	
	Hole Dia.	C'bore Dia.	C'bore Depth			Bottom Mount
Magnet Way	± .13 (.005)	± .13 (.005)	± .13 (.005)	Metric	Inch	Thread Option
MW015-0064	4.70 (.185)	7.80 (.307)	4.00 (.157)	M4	#8	M4 X 0.7 X 6.0 DP.
MW015T-0064	4.70 (.185)	7.80 (.307)	5.79 (.228)	M4	#8	M4 X 0.7 X 6.0 DP.
MW030-0064	5.70 (.224)	9.35 (.368)	5.79 (.228)	M5	#10	M5 X 0.8 X 8.0 DP.
MW030L-0064	4.70 (.185)	7.80 (.307)	5.79 (.228)	M4	#8	M4 X 0.7 X 6.0 DP.
MW050-0064	5.70 (.224)	9.35 (.368)	5.79 (.228)	M5	#10	M5 X 0.8 X 8.0 DP.
MW050L-0064	4.70 (.185)	7.80 (.307)	5.79 (.228)	M4	#8	M4 X 0.7 X 6.0 DP.
MW075-0064	5.70 (.224)	9.35 (.368)	7.95 (.313)	M5	#10	M5 X 0.8 X 8.0 DP.
MW100-0064	5.70 (.224)	9.35 (.368)	9.96 (.392)	M5	#10	M5 X 0.8 X 8.0 DP.

DANAHER MOTION is a registered trademark of Danaher Corporation. Danaher Motion makes every attempt to ensure accuracy and reliability of the specifications in this publication. Specifications are subject to change without notice. Danaher Motion provides this information "AS IS" and disclaims all warranties, express or implied, including, but not limited to, implied warranties of merchantability and fitness for a particular purpose. It is the responsibility of the product user to determine the suitability of this product for a specific application. @2004 Danaher Motion.


www.DanaherMotion.com

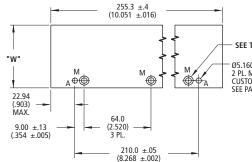

:

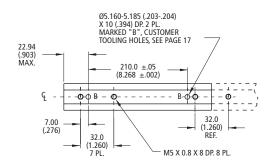
Web site


Kollmorgen

MWxxx-0128

1	
85 (.203204) X 6 (.236) DP. KED "A", BOTH SIDES R TOOLING HOLES, 7	"н" ↓
	+

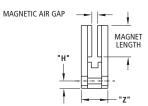



Notes: Dimensions in mm (inches) ② Tolerances unless otherwise specified: no decimal place \pm 0.8 (.03) X decimal place \pm 0.1 (.004) XX decimal place \pm 0.05 (.002)

Magnet Way	Magnet Size Ref.	"H" ± .08 (.003)	"W" ± .4 (.016)	"Z" ± .4 (.016)
MW015-0128	15mm	5.69 (.224)	33.80 (1.331)	25.40 (1.000)
MW015T-0128	15mm	5.69 (.224)	33.80 (1.331)	21.80 (.858)
MW030-0128	30mm	7.11 (.280)	60.20 (2.370)	25.40 (1.000)
MW030L-0128	30mm	5.69 (.224)	49.00 (1.929)	25.40 (1.000)
MW050-0128	50mm	7.11 (.280)	80.20 (3.158)	25.40 (1.000)
MW050L-0128	50mm	5.69 (.224)	69.00 (2.716)	25.40 (1.000)
MW075-0128	75mm	8.23 (.324)	105.20 (4.142)	30.00 (1.181)
MW100-0128	100mm	8.23 (.324)	130.20 (5.126)	34.00 (1.339)

	Hardware (Hex, Socket Head Cap)										
	Hole Dia.	C'bore Dia	C'bore Depth			Bottom Mount					
Magnet Way	± .13 (.005)	± .13 (.005)	± .13 (.005)	Metric	Inch	Thread Option					
MW015-0128	4.70 (.185)	7.80 (.307)	4.00 (.157)	M4	#8	M4 X 0.7 X 6.0 DP.					
MW015T-0128	4.70 (.185)	7.80 (.307)	5.79 (.228)	M4	#8	M4 X 0.7 X 6.0 DP.					
MW030-0128	5.70 (.224)	9.35 (.368)	5.79 (.228)	M5	#10	M5 X 0.8 X 8.0 DP.					
MW030L-0128	4.70 (.185)	7.80 (.307)	5.79 (.228)	M4	#8	M4 X 0.7 X 6.0 DP.					
MW050-0128	5.70 (.224)	9.35 (.368)	5.79 (.228)	M5	#10	M5 X 0.8 X 8.0 DP.					
MW050L-0128	4.70 (.185)	7.80 (.307)	5.79 (.228)	M4	#8	M4 X 0.7 X 6.0 DP.					
MW075-0128	5.70 (.224)	9.35 (.368)	7.95 (.313)	M5	#10	M5 X 0.8 X 8.0 DP.					
MW100-0128	5.70 (.224)	9.35 (.368)	9.96 (.392)	M5	#10	M5 X 0.8 X 8.0 DP.					

MWxxx-0256



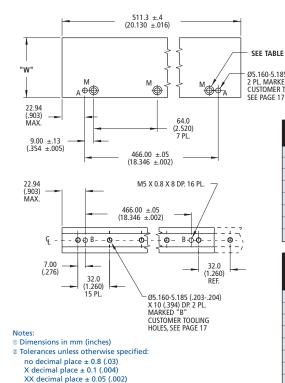
Notes: (1) Dimensions in mm (inches)

② Tolerances unless otherwise specified: no decimal place ± 0.8 (.03)

X decimal place \pm 0.1 (.004) XX decimal place \pm 0.05 (.002)

SEE TABLE - Ø5.160-5.185 (.203-.204) X 6 (.236) DP. 2 PL. MARKED "A", BOTH SIDES CUSTOMER TOOLING HOLES, SEE PAGE 17

Magnet Way	Magnet Size Ref.	"H" ± .08 (.003)	"W" ± .4 (.016)	"Z" ± .4 (.016)
MW015-0256	15mm	5.69 (.224)	33.80 (1.331)	25.40 (1.000)
MW015T-0256	15mm	5.69 (.224)	33.80 (1.331)	21.80 (.858)
MW030-0256	30mm	7.11 (.280)	60.20 (2.370)	25.40 (1.000)
MW030L-0256	30mm	5.69 (.224)	49.00 (1.929)	25.40 (1.000)
MW050-0256	50mm	7.11 (.280)	80.20 (3.158)	25.40 (1.000)
MW050L-0256	50mm	5.69 (.224)	69.00 (2.716)	25.40 (1.000)
MW075-0256	75mm	8.23 (.324)	105.20 (4.142)	30.00 (1.181)
MW100-0256	100mm	8.23 (.324)	130.20 (5.126)	34.00 (1.339)

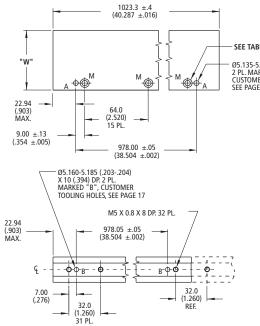

		Hardware (Hex, Socket Head Cap)										
	Hole Dia.	C'bore Dia.	C'bore Depth			Bottom Mount						
Magnet Way	± .13 (.005)	± .13 (.005)	± .13 (.005)	Metric	Inch	Thread Option						
MW015-0256	4.70 (.185)	7.80 (.307)	4.00 (.157)	M4	#8	M4 X 0.7 X 6.0 DP.						
MW015T-0256	4.70 (.185)	7.80 (.307)	5.79 (.228)	M4	#8	M4 X 0.7 X 6.0 DP.						
MW030-0256	5.70 (.224)	9.35 (.368)	5.79 (.228)	M5	#10	M5 X 0.8 X 8.0 DP.						
MW030L-0256	4.70 (.185)	7.80 (.307)	5.79 (.228)	M4	#8	M4 X 0.7 X 6.0 DP.						
MW050-0256	5.70 (.224)	9.35 (.368)	5.79 (.228)	M5	#10	M5 X 0.8 X 8.0 DP.						
MW050L-0256	4.70 (.185)	7.80 (.307)	5.79 (.228)	M4	#8	M4 X 0.7 X 6.0 DP.						
MW075-0256	5.70 (.224)	9.35 (.368)	7.95 (.313)	M5	#10	M5 X 0.8 X 8.0 DP.						
MW100-0256	5.70 (.224)	9.35 (.368)	9.96 (.392)	M5	#10	M5 X 0.8 X 8.0 DP.						

DANAHER MOTION is a registered trademark of Danaher Corporation. Danaher Motion makes every attempt to ensure accuracy and reliability of the specifications in this publication. Specifications are subject to change without notice. Danaher Motion provides this information "AS IS" and disclaims all warranties, express or implied, including, but not limited to, implied warranties of merchantability and fitness for a particular purpose. It is the responsibility of the product user to determine the suitability of this product for a specific application. @2004 Danaher Motion.

: 540

Tel

MWxxx-0512

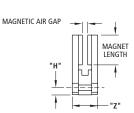

ł MAGNET LENGTH "Н Ø5.160-5.185 (.203-.204) X 6 (.236) DP. 2 PL. MARKED "A", BOTH SIDES CUSTOMER TOOLING HOLES, SEE PAGE 17 "z'

MAGNETIC AIR GAP

	Magnet Size	"H"	"W"	"Z"
Magnet Way	Ref.	± .08 (.003)	± .4 (.016)	± .4 (.016)
MW015-0512	15mm	5.69 (.224)	33.80 (1.331)	25.40 (1.000)
MW015T-0512	15mm	5.69 (.224)	33.80 (1.331)	21.80 (.858)
MW030-0512	30mm	7.11 (.280)	60.20 (2.370)	25.40 (1.000)
MW030L-0512	30mm	5.69 (.224)	49.00 (1.929)	25.40 (1.000)
MW050-0512	50mm	7.11 (.280)	80.20 (3.158)	25.40 (1.000)
MW050L-0512	50mm	5.69 (.224)	69.00 (2.716)	25.40 (1.000)
MW075-0512	75mm	8.23 (.324)	105.20 (4.142)	30.00 (1.181)
MW100-0512	100mm	8.23 (.324)	130.20 (5.126)	34.00 (1.339)

	Hardware (Hex, Socket Head Cap)									
ole Dia. 🛛	C'bore Dia.	C'bore Depth			Bottom Mount					
3 (.005)	± .13 (.005)	± .13 (.005)	Metric	Inch	Thread Option					
0 (.185)	7.80 (.307)	4.00 (.157)	M4	#8	M4 X 0.7 X 6.0 DP.					
0 (.185)	7.80 (.307)	5.79 (.228)	M4	#8	M4 X 0.7 X 6.0 DP.					
0 (.224)	9.35 (.368)	5.79 (.228)	M5	#10	M5 X 0.8 X 8.0 DP.					
0 (.185)	7.80 (.307)	5.79 (.228)	M4	#8	M4 X 0.7 X 6.0 DP.					
0 (.224)	9.35 (.368)	5.79 (.228)	M5	#10	M5 X 0.8 X 8.0 DP.					
0 (.185)	7.80 (.307)	5.79 (.228)	M4	#8	M4 X 0.7 X 6.0 DP.					
0 (.224)	9.35 (.368)	7.95 (.313)	M5	#10	M5 X 0.8 X 8.0 DP.					
0 (.224)	9.35 (.368)	9.96 (.392)	M5	#10	M5 X 0.8 X 8.0 DP.					
	3 (.005) 0 (.185) 0 (.185) 0 (.224) 0 (.185) 0 (.224) 0 (.185) 0 (.224)	3 (.005) ± .13 (.005) 0 (.185) 7.80 (.307) 0 (.185) 7.80 (.307) 0 (.224) 9.35 (.368) 0 (.185) 7.80 (.307) 0 (.224) 9.35 (.368) 0 (.224) 9.35 (.368) 0 (.224) 9.35 (.368) 0 (.185) 7.80 (.307) 0 (.224) 9.35 (.368) 0 (.224) 9.35 (.368)	3 (.005) ± .13 (.005) ± .13 (.005) 0 (.185) 7.80 (.307) 4.00 (.157) 0 (.185) 7.80 (.307) 5.79 (.228) 0 (.224) 9.35 (.368) 5.79 (.228) 0 (.185) 7.80 (.307) 5.79 (.228) 0 (.224) 9.35 (.368) 5.79 (.228) 0 (.224) 9.35 (.368) 5.79 (.228) 0 (.224) 9.35 (.368) 5.79 (.228) 0 (.224) 9.35 (.368) 5.79 (.228) 0 (.224) 9.35 (.368) 7.95 (.313)	3 (.005) ± .13 (.005) ± .13 (.005) Metric 0 (.185) 7.80 (.307) 4.00 (.157) M4 0 (.185) 7.80 (.307) 5.79 (.228) M4 0 (.224) 9.35 (.368) 5.79 (.228) M5 0 (.185) 7.80 (.307) 5.79 (.228) M4 0 (.224) 9.35 (.368) 5.79 (.228) M4 0 (.224) 9.35 (.368) 5.79 (.228) M5 0 (.185) 7.80 (.307) 5.79 (.228) M4 0 (.224) 9.35 (.368) 5.79 (.228) M4 0 (.224) 9.35 (.368) 7.95 (.313) M5	8 (.005) ± .13 (.005) ± .13 (.005) Metric Inch 0 (.185) 7.80 (.307) 4.00 (.157) M4 #8 0 (.185) 7.80 (.307) 5.79 (.228) M4 #8 0 (.224) 9.35 (.368) 5.79 (.228) M5 #10 0 (.224) 9.35 (.368) 5.79 (.228) M4 #8 0 (.224) 9.35 (.368) 7.95 (.313) M5 #10					

MWxxx-1024



: 540

Tel

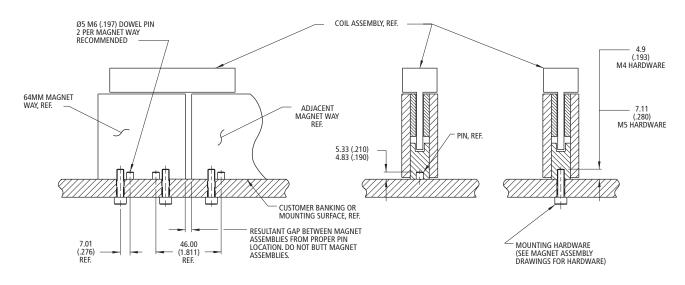
633 • 3400

SEE TABLE Ø5.135-5.185 (.203-.204) X 6 (.236) DP. 2 PL. MARKED "A", BOTH SIDES CUSTOMER TOOLING HOLES, SEE PAGE 17

Notes: ① Dimensions in mm (inches) ② Tolerances unless otherwise specified: no decimal place ± 0.8 (.03) X decimal place \pm 0.1 (.004) XX decimal place \pm 0.05 (.002)

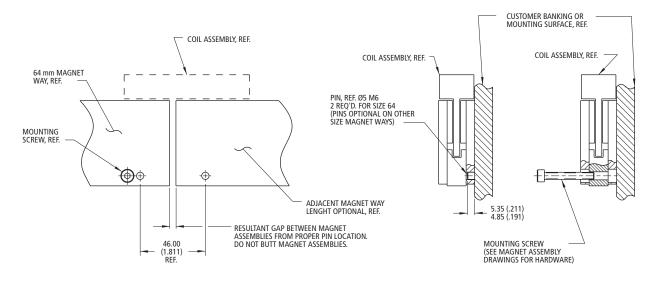
Magnet Way	Magnet Size Ref.	"H" ± .08 (.003)	"W" ± .4 (.016)	"Z" ± .4 (.016)
MW015-1024	15mm	5.69 (.224)	33.80 (1.331)	25.40 (1.000)
MW015T-1024	15mm	5.69 (.224)	33.80 (1.331)	21.80 (.858)
MW030-1024	30mm	7.11 (.280)	60.20 (2.370)	25.40 (1.000)
MW030L-1024	30mm	5.69 (.224)	49.00 (1.929)	25.40 (1.000)
MW050-1024	50mm	7.11 (.280)	80.20 (3.158)	25.40 (1.000)
MW050L-1024	50mm	5.69 (.224)	69.00 (2.716)	25.40 (1.000)
MW075-1024	75mm	8.23 (.324)	105.20 (4.142)	30.00 (1.181)
MW100-1024	100mm	8.23 (.324)	130.20 (5.126)	34.00 (1.339)

	Hardware (Hex, Socket Head Cap)										
	Hole Dia.	C'bore Dia.	C'bore Depth			Bottom Mount					
Magnet Way	± .13 (.005)	± .13 (.005)	± .13 (.005)	Metric	Inch	Thread Option					
MW015-1024	4.70 (.185)	7.80 (.307)	4.00 (.157)	M4	#8	M4 X 0.7 X 6.0 DP.					
MW015T-1024	4.70 (.185)	7.80 (.307)	5.79 (.228)	M4	#8	M4 X 0.7 X 6.0 DP.					
MW030-1024	5.70 (.224)	9.35 (.368)	5.79 (.228)	M5	#10	M5 X 0.8 X 8.0 DP.					
MW030L-1024	4.70 (.185)	7.80 (.307)	5.79 (.228)	M4	#8	M4 X 0.7 X 6.0 DP.					
MW050-1024	5.70 (.224)	9.35 (.368)	5.79 (.228)	M5	#10	M5 X 0.8 X 8.0 DP.					
MW050L-1024	4.70 (.185)	7.80 (.307)	5.79 (.228)	M4	#8	M4 X 0.7 X 6.0 DP.					
MW075-1024	5.70 (.224)	9.35 (.368)	7.95 (.313)	M5	#10	M5 X 0.8 X 8.0 DP.					
MW100-1024	5.70 (.224)	9.35 (.368)	9.96 (.392)	M5	#10	M5 X 0.8 X 8.0 DP.					


DANAHER MOTION is a registered trademark of Danaher Corporation. Danaher Motion makes every attempt to ensure accuracy and reliability of the specifications in this publication. Specifications are subject to change without notice. Danaher Motion provides this information "AS IS" and disclaims all warranties, express or implied, including, but not limited to, implied warranties of merchantability and fitness for a particular purpose. It is the responsibility of the product user to determine the suitability of this product for a specific application. @2004 Danaher Motion.

www.DanaherMotion.com

Web site :


Magnet Way widths correspond to the mating coil assembly width. Magnet Way assemblies are modular and come in standard lengths: 64, 128, 256, 512, 1024 mm. Multiple magnet assemblies can be installed to obtain the desired length. Shown below is the method to mount multiple assemblies.

Bottom mounting installation

Dimensions in mm(in)

Side mounting installation

Dimensions in mm(in)

DANAHER MOTION is a registered trademark of Danaher Corporation. Danaher Motion makes every attempt to ensure accuracy and reliability of the specifications in this publication. Specifications are subject to change without notice. Danaher Motion provides this information "AS IS" and disclaims all warranties, express or implied, including, but not limited to, implied warranties of merchantability and fitness for a particular purpose. It is the responsibility of the product user to determine the suitability of this product for a specific application. @2004 Danaher Motion.

17

ICD05 Series Ironcore

Rated Performance	Symbol	Units	ICD05	5-030	ICD0	5-050	ICD05	5-075	ICD05-100		
Peak force	Fp	N	17	0	2	80	42	5	55	0	
		lbf	38		63		96		124		
Continuous force @ Tmax	Fc	N		57		87		125		157	
see note 1		lbf	1	-		20	28	-	35		
Motor constant @ 130°C	Km	N/√W	10	-		1.5	18		22		
		lbf/√W	2.	-		.3	4.		4.	-	
Motor constant @ 25°C	Km25	N/VW	12	-		7.2	22	-	26		
		lbf/√W	2.	-		.9	4.	-	5.	-	
Max. Cont. power dissipation	Pc	W	3	0	3	6	40	5	5	1	
Electrical Specifications											
		Winding Code	A1	A5	A1	A5	A1	A5	A1	A5	
Peak current	lp	Arms	7.9	13.7	8.5	14.7	8.5	14.7	8.5	14.7	
Continuous Current @ Tmax	lc	Arms	2.1	3.7	2.0	3.4	1.9	3.3	1.8	3.1	
Electrical resistance											
@ 25°C±10%	Rm	Ohms L-L	3.2	1.1	4.5	1.5	6.1	2.0	7.7	2.6	
Electrical inductance ±20%	L	mH L-L	9.1	3.0	14.4	4.8	21.0	7.0	27.6	9.2	
Back EMF constant	Ke	Vpeak/m/s L-L	21.8	12.6	36.3	21.0	54.3	31.4	72.4	41.8	
@ 25°C±10%		Vpeak/in/sec L-L	0.55	0.32	0.92	0.53	1.38	0.80	1.84	1.06	
Force constant @ 25°C±10%	Kf	N/Arms	26.7	15.4	44.5	25.7	66.5	38.4	88.7	51.2	
		lbf / Arms	6.0	3.5	10.0	5.8	15.0	8.6	19.9	11.5	
Mechanical Specifications											
Coil Assembly Mass ±15%	Mc	kg	0.	62	0.	.95	1.	36	1.	71	
		lbs	1.	.4	2	.1	3.	.0	3	.8	
Magnetic Way Type			MC	030	МС	D050	MC	0075	МС	D100	
Magnetic Way Mass ±15%	Mw	kg/m	2.	70	3.	.93	5.4	48	7.	04	
		lbs/in	0.	15	0.	.22	0.	31	0.	39	
Figures of Merit & Addition	al Data										
Electrical time constant	Те	ms	2.	.9	3	.2	3.	.4	3	.6	
Max.Theoretical Acceleration	Amax	g's	28	.0	3(0.2	31	.9	32	2.8	
Magnetic attraction	Fa	kN	0.	53	0.	.89	1.33		1.	78	
		lbf	11	19	2	200		99	4	00	
Thermal Resistance											
- coils to external structure	Rth	°C/Watt	3.	50	2.90		2.30		2.06		
Max. Allowable Coil Temp.	Tmax	°C	13	30	1	30	13	30	1	30	

Notes:

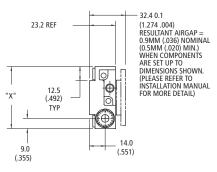
I The motor continuous rated force is measured with the motor coils achieving the motor maximum allowable temperature Tmax. At this operating point the number of watts being dissipated by the coil assembly is equal to the maximum continuous power dissipation Pc. The heat load can be limited to a value below Pc by limiting the continuous rated output force of the motor to a value equal to: Fc = Km x Square Root (Pw); where Pw = the acceptable heat load, in watts, and must be a value below Pc.

The RMS current needed to produce this force is simply Fc divided by the force constant Kf.
2 Alternate windings can be made available. Please consult the Danaher Motion Customer Assistance Center for design options. 3 Maximum Theoretical Acceleration is based on the motors peak force and the motor mass alone. Limitations due to such factors as the additional mass of the load, the bearing type and design, the shock rating of the feedback, the peak current available from the amplifier etc. must be considered to determine the achievable acceleration in each application.

633 • 3400

④ Please see our Application Sizing pages in the back of this publication for more details on sizing and thermal considerations.

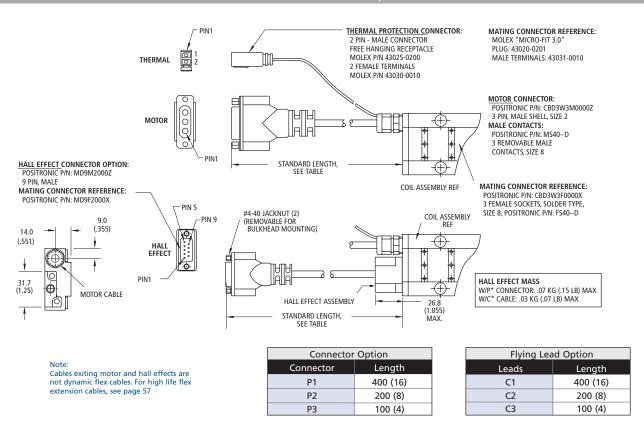
DANAHER MOTION is a registered trademark of Danaher Corporation. Danaher Motion makes every attempt to ensure accuracy and reliability of the specifications in this publication. Specifications are subject to change without notice. Danaher Motion provides this information "AS IS" and disclaims all warranties, express or implied, including, but not limited to, implied warranties of merchantability and fitness for a particular purpose. It is the responsibility of the product user to determine the suitability of this product for a specific application. @2004 Danaher Motion.



Tel

19

ICD05-xxx


Motor Coil	Coil Width	# Holes
Туре	"X"	"N"
ICD05-030	55.0 (2.165) ± 1.0 (.04)	3
ICD05-050	75.0 (2.953) ±.1.0 (.04)	4
ICD05-075	100.0 (3.937) ± 1.0 (.04)	5
ICD05-100	125.0 (4.921) ± 1.0 (.04)	5

Notes:

 Dimensions in mm (inches)
 Tolerances unless otherwise specified: no decimal place ± 0.8 (.03) X decimal place ± 0.1 (.004)

XX decimal place ± 0.05 (.002)

Termination and Hall Effect Options

DANAHER MOTION is a registered trademark of Danaher Corporation. Danaher Motion makes every attempt to ensure accuracy and reliability of the specifications in this publication. Specifications are subject to change without notice. Danaher Motion provides this information "AS IS" and disclaims all warranties, express or implied, including, but not limited to, implied warranties of merchantability and fitness for a particular purpose. It is the responsibility of the product user to determine the suitability of this product for a specific application. @2004 Danaher Motion.

ICD10 Series Ironcore

Rated Performance	Symbol	Units		ICD1	0-030)		ICD10	0-050			ICD10	0-075			ICD1	0-100	
Peak force	Fp	N		340		560			85	0			11	30				
		lbf		76		126		191					2	54				
Continuous force @ Tmax	Fc	Ν		1(04			17	1		246				315			
see note 1		lbf		2	3			38	3			5	5			7	/1	
Motor constant @ 130°C	Km	N/√W		14	1.6			20	.5			26	.4		31.3			
		lbf/√W		3	.3			4.	6			5.	9			7	.0	
Motor constant @ 25°C	Km25	N/√W		17	7.3			24	.3			31	.3			3	7.1	
		lbf/√W		3	.9			5.	5			7.	0			8	.3	
Max. Cont. power dissipation	Pc	W		5	1			69	Э			8	7			1	01	
Electrical Specifications																		
		Winding Code	A1	A4	A5	A8	A1	A4	A5	A8	A1	A4	A5	A8	A1	A4	A5	A8
Peak current	lp	Arms	7.9	15.8	13.7	27.4	7.9	15.8	13.7	27.4	7.9	15.8	13.7	27.4	7.9	15.8	13.7	27.4
Continuous Current @ Tmax	lc	Arms	1.9	3.9	3.4	6.8	1.9	3.8	3.3	6.6	1.8	3.7	3.2	6.4	1.8	3.5	3.1	6.1
Electrical resistance																		
@ 25°C±10%	Rm	Ohms L-L	6.4	1.6	2.1	0.5	9.0	2.2	3.0	0.7	12.2	3.0	4.1	1.0	15.4	3.9	5.1	1.3
Electrical inductance ±20%	L	mH L-L	18.3	4.6	6.1	1.5	29.0	7.3	9.7	2.4	42.4	10.6	14.1	3.5	55.8	13.9	18.6	4.6
Back EMF constant	Ke	Vpeak/m/s L-L	43.7	21.8	25.2	12.6	72.8	36.4	42.0	21.0	109.2	54.6	63.1	31.5	145.7	72.8	84.1	42.0
@ 25°C±10%		Vpeak/in/sec L-L	1.11	0.55	0.64	0.32	1.85	0.92	1.07	0.53	2.77	1.39	1.60	0.80	3.70	1.85	2.14	1.07
Force constant @ 25°C±10%	Kf	N/Arms	53.5	26.8	30.9	15.4	89.2	44.6	51.5	25.7	133.8	66.9	77.2	38.6	178.4	89.2	103.0	51.5
		lbf / Arms	12.0	6.0	6.9	3.5	20.1	10.0	11.6	5.8	30.1	15.0	17.4	8.7	40.1	20.1	23.2	11.6
Mechanical Specification	s																	
Coil Assembly Mass ±15%	Mc	kg		1	.1			1.9)			2	.7			3	.4	
		lbs		2	.5			4.1				5	.9			7	.5	
Magnetic Way Type				MC	D030			MCD	050			MC	075			MC	D100	
Magnetic Way Mass ±15%	Mw	kg/m		2.	70			3.9	3			5.	48			7.	.04	
		lbs/in		0.	15			0.2	2			0.	31			0.	.39	
Figures of Merit & Addit	ional Data																	
Electrical time constant	Те	ms		2	.9			3.2	2			3	.5			3	.6	
Max.Theoretical Acceleration	Amax	g's		30	0.7			30.	7			32	2.5			3	3.7	
Magnetic attraction	Fa	kN	1.06		1.78		2.66			3.56								
		lbf	238		400		598			800								
Thermal Resistance																		
- coils to external structure	Rth	°C/Watt		2.	05		1.52		1.21		1.04							
Max. Allowable Coil Temp.	Tmax	°C		1	30			130	C			130			1	30		

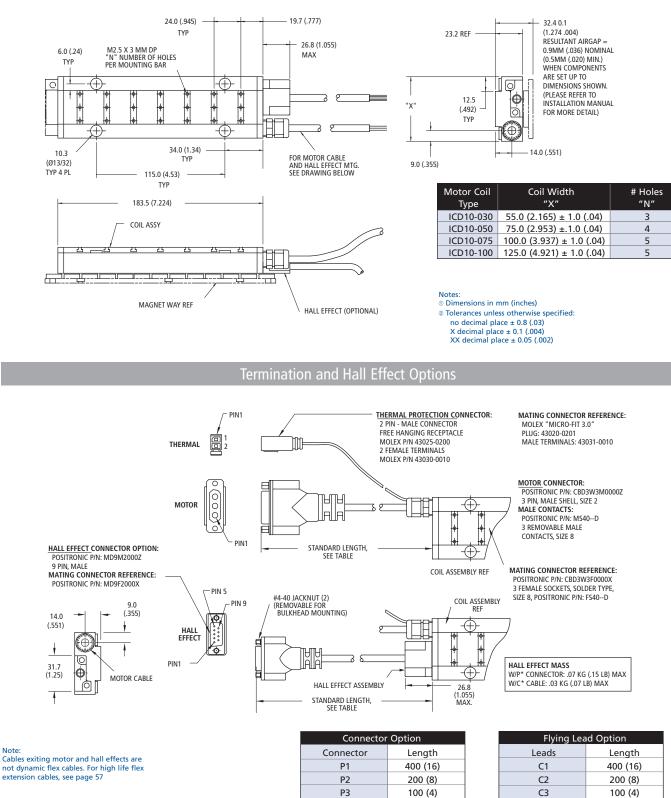
Notes:

I The motor continuous rated force is measured with the motor coils achieving the motor maximum allowable temperature Tmax. At this operating point the number of watts being dissipated by the coil assembly is equal to the maximum continuous power dissipation Pc. The heat load can be limited to a value below Pc by limiting the continuous rated output force of the motor to a value equal to: Fc = Km x Square Root (Pw); where Pw = the acceptable heat load, in watts, and must be a value below Pc.

633 • 3400

The RMS current needed to produce this force is simply Fc divided by the force constant Kf. ② Alternate windings can be made available. Please consult the Danaher Motion Customer Assistance Center for design options. 3 Maximum Theoretical Acceleration is based on the motors peak force and the motor mass alone. Limitations due to such factors as the additional mass of the load, the bearing type and design, the shock rating of the feedback, the peak current available from the amplifier etc. must be considered to determine the achievable acceleration in each application.

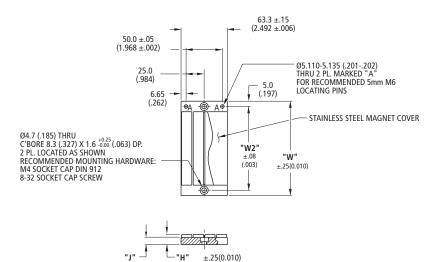
④ Please see our Application Sizing pages in the back of this publication for more details on sizing and thermal considerations.


DANAHER MOTION is a registered trademark of Danaher Corporation. Danaher Motion makes every attempt to ensure accuracy and reliability of the specifications in this publication. Specifications are subject to change without notice. Danaher Motion provides this information "AS IS" and disclaims all warranties, express or implied, including, but not limited to, implied warranties of merchantability and fitness for a particular purpose. It is the responsibility of the product user to determine the suitability of this product for a specific application. @2004 Danaher Motion.

Tel

21

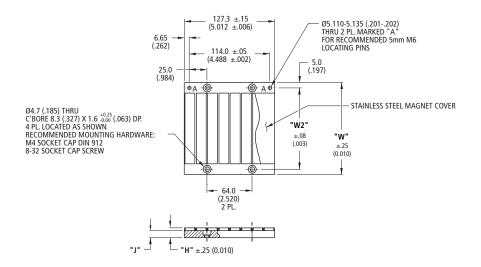
ICD10-xxx



DANAHER MOTION is a registered trademark of Danaher Corporation. Danaher Motion makes every attempt to ensure accuracy and reliability of the specifications in this publication. Specifications are subject to change without notice. Danaher Motion provides this information "AS IS" and disclaims all warranties, express or implied, including, but not limited to, implied warranties of merchantability and fitness for a particular purpose. It is the responsibility of the product user to determine the suitability of this product for a specific application. ©2004 Danaher Motion.

Kollmorgen

Magnet assemblies are modular and can be installed in multiples of same or alternate lengths (see page 24). Standard assembly lengths are shown below.


MCDxx-0064

Туре	"W"	"W2"	"J"	"H"
MCD030-0064-001	55.0 (2.165)	45.0 (1.772)	4.0 (.157)	8.25 (.325)
MCD050-0064-001	75.0 (2.953)	65.0 (2.559)	4.0 (.157)	8.25 (.325)
MCD075-0064-001	100.0 (3.937)	90.0 (3.543)	4.0 (.157)	8.25 (.325)
MCD100-0064-001	125.0 (4.921)	115.0 (4.528)	4.0 (.157)	8.25 (.325)

Dimensions in mm(in)

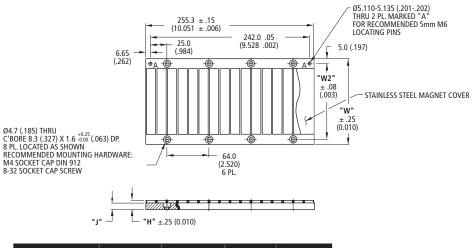
MCDxx-0128

Туре	"W"	"W2"	"J"	"H"
MCD030-0128-001	55.0 (2.165)	45.0 (1.772)	4.0 (.157)	8.25 (.325)
MCD050-0128-001	75.0 (2.953)	65.0 (2.559)	4.0 (.157)	8.25 (.325)
MCD075-0128-001	100.0 (3.937)	90.0 (3.543)	4.0 (.157)	8.25 (.325)
MCD100-0128-001	125.0 (4.921)	115.0 (4.528)	4.0 (.157)	8.25 (.325)

Web site :

Dimensions in mm(in)

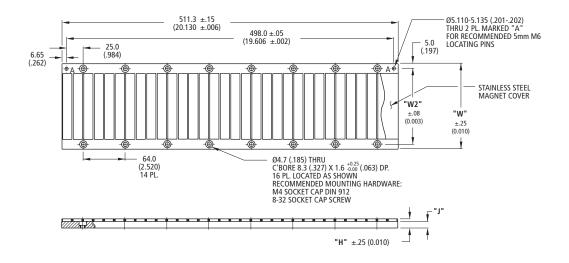
DANAHER MOTION is a registered trademark of Danaher Corporation. Danaher Motion makes every attempt to ensure accuracy and reliability of the specifications in this publication. Specifications are subject to change without notice. Danaher Motion provides this information "AS IS" and disclaims all warranties, express or implied, including, but not limited to, implied warranties of merchantability and fitness for a particular purpose. It is the responsibility of the product user to determine the suitability of this product for a specific application. @2004 Danaher Motion.


www.DanaherMotion.com

Tel

: 540

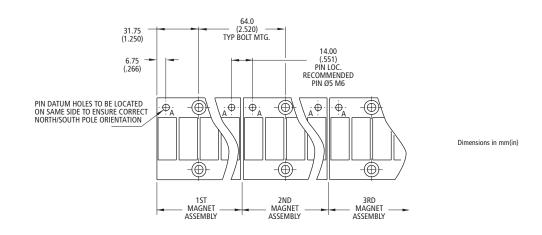
633 • 3400


MCDxx-0256

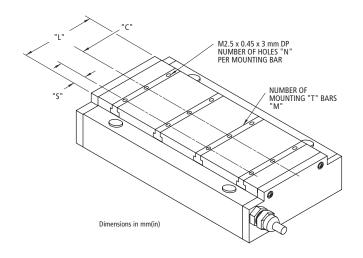
Туре	"W"	"W2"	"J"	"H"
MCD030-0256-001	55.0 (2.165)	45.0 (1.772)	4.0 (.157)	8.25 (.325)
MCD050-0256-001	75.0 (2.953)	65.0 (2.559)	4.0 (.157)	8.25 (.325)
MCD075-0256-001	100.0 (3.937)	90.0 (3.543)	4.0 (.157)	8.25 (.325)
MCD100-0256-001	125.0 (4.921)	115.0 (4.528)	4.0 (.157)	8.25 (.325)

Dimensions in mm(in)

MCDxx-0512


"W"	"W2"	"J"	"H"
55.0 (2.165)	45.0 (1.772)	4.0 (.157)	8.25 (.325)
75.0 (2.953)	65.0 (2.559)	4.0 (.157)	8.25 (.325)
100.0 (3.937)	90.0 (3.543)	4.0 (.157)	8.25 (.325)
125.0 (4.921)	115.0 (4.528)	4.0 (.157)	8.25 (.325)
	55.0 (2.165) 75.0 (2.953) 100.0 (3.937)	55.0 (2.165)45.0 (1.772)75.0 (2.953)65.0 (2.559)100.0 (3.937)90.0 (3.543)	55.0 (2.165) 45.0 (1.772) 4.0 (.157) 75.0 (2.953) 65.0 (2.559) 4.0 (.157) 100.0 (3.937) 90.0 (3.543) 4.0 (.157)

Dimensions in mm(in)


DANAHER MOTION is a registered trademark of Danaher Corporation. Danaher Motion makes every attempt to ensure accuracy and reliability of the specifications in this publication. Specifications are subject to change without notice. Danaher Motion provides this information "AS IS" and disclaims all warranties, express or implied, including, but not limited to, implied warranties of merchantability and fitness for a particular purpose. It is the responsibility of the product user to determine the suitability of this product for a specific application. @2004 Danaher Motion.

Typical Installation of Multiple Ironcore Magnet Assemblies

Magnet Way widths correspond to the mating coil assembly width. Magnet Way assemblies are modular and come in standard lengths: 64, 128, 256, 512 mm. Multiple magnet assemblies can be installed to obtain the desired length. Shown below is the method to mount multiple assemblies.

Typical Mounting Bar Lengths & Mounting Holes Tabulation

633 • 3400

Motor	Number	Spacing	Mounting	
Coil	of Holes	Between Holes	Bar Length	
Туре	"N"	"С"	"L"	"S"
ICDXX-030	3	12.0 (.472)	30 (1.18)	3.0 (.118)
ICDXX-050	4	12.0 (.472)	50 (1.97)	7.0 (.276)
ICDXX-075	5	16.0 (.630)	75 (2.95)	5.5 (.217)
ICDXX-100	5	20.0 (.787)	100 (3.94)	10.0 (.394)

Motor Coil Type	Number of Bars "M"
ICD05-XXX	4
ICD10-XXX	7

www.DanaherMotion.com

DANAHER MOTION is a registered trademark of Danaher Corporation. Danaher Motion makes every attempt to ensure accuracy and reliability of the specifications in this publication. Specifications are subject to change without notice. Danaher Motion provides this information "AS IS" and disclaims all warranties, express or implied, including, but not limited to, implied warranties of merchantability and fitness for a particular purpose. It is the responsibility of the product user to determine the suitability of this product for a specific application. @2004 Danaher Motion.

Web site :

Tel

11 Series Ironcore - Non-cooled

Rated Performance	Symbol	Units	IC1	1-015	5 IC11-030 I		IC1 [·]	1-050	IC11	-075	IC11	1-100	IC11	-150	IC11	-200	IC11	-250
Peak force	Fp	Ν	1	90	3	75	6	525	94	40	12	250	18	875	25	00	31	125
		lbf	4	43	8	34	1	41	2	11	2	81	4	22	50	62	7	03
Continuous force @ Tmax	Fc	Ν		73	1	51	2	76	4	35	5	99	9	05	12	55	14	496
see note ①		lbf		16	3	34	(62	9	8	1	35	2	03	28	32	3	36
Motor constant @ 25°C	Km	N/√W	1	3.1	2	2.5	3	2.0	41	1.4	49	9.1	62	2.0	73	3.0	79	9.5
Max. Cont. power dissipation	Pc	W	4	44	6	54	1	06	1	57	2	10	3	00	4	18	5	00
Electrical Specifications																		
		Winding Code	A1	A5	A1	A5	A1	A5	A1	A5	A1	A5	A1	A5	A1	A5	A1	A5
Peak current	lp	Arms	11.3	19.1	11.3	19.1	11.3	19.1	11.3	19.1	11.3	19.1	11.3	19.1	11.3	19.1	11.3	19.1
Continuous Current @ Tmax	lc	Arms	3.9	6.7	4.0	6.9	4.4	7.6	4.6	8.0	4.8	8.2	4.8	8.3	5.0	8.6	4.9	8.6
Electrical resistance																		
@ 25°C±10%	Rm	Ohms L-L	1.4	0.47	1.9	0.63	2.6	0.87	3.5	1.2	4.4	1.5	6.2	2.1	8.0	2.7	9.7	3.2
Electrical inductance ±20%	L	mH L-L	9.1	3.0	16.7	5.6	26.7	8.9	39.4	13.1	52.0	17.3	77.3	25.8	103	34.2	128	42.6
Back EMF constant	Ke	Vpeak/m/s L-L	15.4	8.9	30.9	17.8	51.4	29.7	77.1	44.5	103	59.3	154	89.0	206	119	247	143
@ 25°C±10%		Vpeak/in/sec L-L	0.39	0.23	0.78	0.45	1.30	0.75	1.96	1.13	2.61	1.51	3.92	2.26	5.22	3.02	6.27	3.62
Force constant @ 25°C±10%	Kf	N/Arms	18.9	10.9	37.8	21.8	62.9	36.3	94.4	54.5	126	72.7	189	109	252	145	303	175
		lbf / Arms	4.2	2.5	8.5	4.9	14.1	8.2	21.2	12.3	28.3	16.3	42.4	24.5	56.6	32.7	68.0	39.3
Mechanical Specifications																		
Coil Assembly Mass ±15%	Mc	kg	1	.7	2	.5	3	8.6	5	.0	6	.5	9	.4	12	2.3	15	5.2
		lbs	3	8.7	5	.5	7	7.9	1'	1.0	14	4.3	2	0.7	27	7.1	33	3.5
Magnetic Way Type			мо	015	мс	030	м	050	мс	075	мс	100	м	150	мс	200	мс	250
Magnetic Way Mass ±15%	Mw	kg/m	2	2.5	5	.4	7	7.5	1(D.1	12	2.7	2	0.7	26	5.8	33	3.2
		lbs/in	0.	.14	0.	30	0	.42	0.	56	0.	71	1	.16	1.	50	1.5	86
Figures of Merit & Additio	nal Data																	
Electrical time constant	Te	ms	6	i.5	8	.8	1	0.3	1'	1.3	1'	1.8	1	2.5	12	2.8	13	3.2
Max.Theoretical Acceleration	Amax	g's	1	1.4	15	5.3	1	7.7	19	9.2	19	9.6	2	0.3	20).7	21	1.0
Magnetic attraction	Fa	kN	0.	0.72		.4	2	2.4	3	.7	4	.9	7	.3	9	.9	12	2.3
		lbf	1	162		24	5	46	8	21	11	02	16	539	22	214	27	61
Thermal Resistance																		
- coils to external structure	Rth	°C/Watt	2.	.40	1.	64	0	.99	0.	67	0.	50	0	.35	0.	25	0.2	21
Max. Allowable Coil Temp.	Tmax	°C	1	30	1.	30	1	30	1	30	1	30	1	30	1	30	13	30

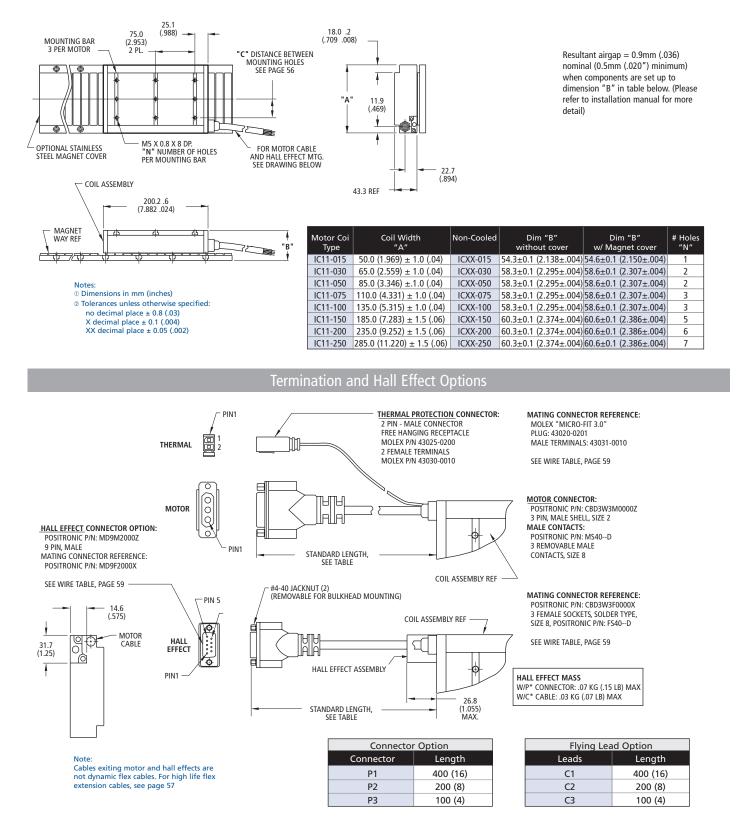
Notes:

The motor continuous rated force is measured with the motor coils achieving the motor maximum allowable temperature Tmax. At this operating point the number of watts being dissipated by the coil assembly is equal to the maximum continuous power dissipation Pc. The heat load can be limited to a value below Pc by limiting the continuous rated output force of the motor to a value equal to: Fc = Km x Square Root (Pw); where Pw = the acceptable heat load, in watts, and must be a value below Pc. The RMS current needed to produce this force is simply Fc divided by the force constant Kf.

② Alternate windings can be made available. Please consult the Danaher Motion Customer Assistance Center for design options.
 ③ Maximum Theoretical Acceleration is based on the motors peak force and the motor mass alone. Limitations due to such factors as the additional mass of the load, the bearing type and design, the shock rating of the feedback, the peak current available from the amplifier

etc. must be considered to determine the achievable acceleration in each application.

Image: Please see our Application Sizing pages in the back of this publication for more details on sizing and thermal considerations.


DANAHER MOTION is a registered trademark of Danaher Corporation. Danaher Motion makes every attempt to ensure accuracy and reliability of the specifications in this publication. Specifications are subject to change without notice. Danaher Motion provides this information "AS IS" and disclaims all warranties, express or implied, including, but not limited to, implied warranties of merchantability and fitness for a particular purpose. It is the responsibility of the product user to determine the suitability of this product for a specific application. @2004 Danaher Motion.

633 • 3400

: 540

Tel

Non-Cooled IC11-xxx

DANAHER MOTION is a registered trademark of Danaher Corporation. Danaher Motion makes every attempt to ensure accuracy and reliability of the specifications in this publication. Specifications are subject to change without notice. Danaher Motion provides this information "AS IS" and disclaims all warranties, express or implied, including, but not limited to, implied warranties of merchantability and fitness for a particular purpose. It is the responsibility of the product user to determine the suitability of this product for a specific application. @2004 Danaher Motion.

www.DanaherMotion.com

:

Web site

Tel

: 540

633 • 3400

22 SERIES IRONCORE - NON-COOLED

Rated Performance	Symbol	Units		C22-01	5	I	C22-03	0	I	C22-05()	I	C22-07	5
Peak force	Fp	Ν		375			750			1250			1875	
		lbf		84			169			281			422	
Continuous force @ Tmax	Fc	Ν		143			298			548			864	
see note ①		lbf		32			67			123			194	
Motor constant @ 25°C	Km	N/\W		18.2			31.4			44.8			58.0	
Max. Cont. power dissipation	Pc	W		88			128			212			313	
Electrical Specifications														
		Winding Code	A1	A2	A6	A1	A2	A6	A1	A2	A6	A1	A2	A6
Peak current	lp	Arms	11.0	22.0	38.1	11.0	22.0	38.1	11.0	22.0	38.1	11.0	22.0	38.1
Continuous Current @Tmax	lc	Arms	3.8	7.6	13.1	3.9	7.9	13.7	4.4	8.7	15.1	4.6	9.2	15.9
Electrical resistance														
@ 25°C±10%	Rm	Ohms L-L	2.9	0.73	0.24	3.9	1.0	0.33	5.3	1.3	0.44	7.1	1.8	0.59
Electrical inductance ±20%	L	mH L-L	18.3	4.6	1.5	33.4	8.4	2.8	53.4	13.4	4.5	78.9	19.7	6.6
Back EMF constant	Ke	Vpeak/m/s L-L	30.9	15.4	8.9	61.7	30.9	17.8	103	51.4	29.7	154	77.1	44.5
@ 25°C±10%		Vpeak/in/sec L-L	0.78	0.39	0.23	1.57	0.78	0.45	2.61	1.31	0.75	3.92	1.96	1.13
Force constant @ 25°C±10%	Kf	N/Arms	37.8	18.9	10.9	75.6	37.8	21.8	126	63.0	36.3	189	94.4	54.5
		lbf/Arms	8.5	4.2	2.5	17.0	8.5	4.9	28.3	14.2	8.2	42.4	21.2	12.3
Mechanical Specifications														
Coil Assembly Mass ±15%	Mc	kg		3.2			4.8			6.9			9.6	
		lbs		7.1			10.6			15.2			21.2	
Magnetic Way Type				MC015			MC030			MC050			MC075	
Magnetic Way Mass ±15%	Mw	kg/m		2.5			5.4			7.5			10.1	
		lbs/in		0.14			0.30			0.42			0.56	
Figures of Merit & Additio	nal Data													
Electrical time constant	Te	ms		6.3			8.6			10.1			11.1	
Max.Theoretical Acceleration	Amax	g's		11.9			15.9			18.5			19.9	
Magnetic attraction	Fa	kN	1.5			2.9			4.9			7.3		
		lbf	328			654			1090			1637		
Thermal Resistance														
- coils to external structure	Rth	°C/Watt	1.20				0.82			0.50			0.34	
Max. Allowable Coil Temp.	Tmax	°C	130				130			130			130	

Notes:

 \oplus The motor continuous rated force is measured with the motor coils achieving the motor maximum allowable temperature Tmax. At this operating point the number of watts being dissipated by the coil assembly is equal to the maximum continuous power dissipation Pc. The heat load can be limited to a value below Pc by limiting the continuous rated output force of the motor to a value equal to: Fc = Km x Square Root (Pw); where Pw = the acceptable heat load, in watts, and must be a value below Pc. The RMS current needed to produce this force is simply Fc divided by the force constant Kf.

2 Alternate windings can be made available. Please consult the Danaher Motion Customer Assistance Center for design options. 3 Maximum Theoretical Acceleration is based on the motors peak force and the motor mass alone. Limitations due to such factors as the additional mass of the load, the bearing type and design, the shock rating of the feedback, the peak current available from the amplifier Please see our Application Sizing pages in the back of this publication for more details on sizing and thermal considerations.

Tel

: 540

DANAHER MOTION is a registered trademark of Danaher Corporation. Danaher Motion makes every attempt to ensure accuracy and reliability of the specifications in this publication. Specifications are subject to change without notice. Danaher Motion provides this information "AS IS" and disclaims all warranties, express or implied, including, but not limited to, implied warranties of merchantability and fitness for a particular purpose. It is the responsibility of the product user to determine the suitability of this product for a specific application. @2004 Danaher Motion.

22 Series Ironcore - Non-cooled

Rated Performance	Symbol	Units		IC22-10	0	ŀ	C22-150)	I	C22-20	0	10	22-250)
Peak force	Fp	Ν		2500			3750			5000			6250	
		lbf		562			843			1124			1405	
Continuous force @Tmax	Fc	Ν		1198			1810			2513			3000	
see note ①		lbf		269			407			565			674	
Motor constant @ 25°C	Km	N/√W		69.5			87.8			103.4			112.8	
Max. Cont. power dissipation	Pc	W	420				600			833			1000	
Electrical Specifications														
		Winding Code	A1			A1	A2	A6	A1	A2	A6	A1	A2	A6
Peak current	lp	Arms	11.0	22.0	38.1	11.0	22.0	38.1	11.0	22.0	38.1	11.0	22.0	38.1
Continuous Current @ Tmax	lc	Arms	4.8	9.5	16.5	4.8	9.6	16.6	5.0	10.0	17.3	5.0	9.9	17.2
Electrical resistance														
@ 25°C±10%	Rm	Ohms L-L	8.8	2.2	0.73	12.4	3.1	1.0	15.9	4.0	1.3	19.3	4.8	1.6
Electrical inductance ±20%	L	mH L-L	104	26.0	8.7	155	38.7	12.9	205	51.3	17.1	256	63.9	21.3
Back EMF constant	Ke	Vpeak/m/s L-L	206	103	59.3	308	154	89.0	411	206	119	494	247	143
@ 25°C±10%		Vpeak/in/sec L-L	5.22	2.61	1.51	7.83	3.92	2.26	10.4	5.22	3.02	12.5	6.27	3.62
Force constant @ 25°C±10%	Kf	N/Arms	252	126	72.7	378	189	109	504	252	145	605	303	175
		lbf/Arms	56.6	28.3	16.3	84.9	42.5	24.5	113	56.6	32.7	136	68.0	39.3
Mechanical Specifications														
Coil Assembly Mass ±15%	Mc	kg		12.5			18.1			23.7			29.3	
		lbs		27.6			39.9			52.2			64.6	
Magnetic Way Type				MC100			MC150			MC200			MC250	
Magnetic Way Mass ±15%	Mw	kg/m		12.7			20.7			26.8			33.2	
		lbs/in		0.71			1.16			1.50			1.86	
Figures of Merit & Additio	nal Data													
Electrical time constant	Те	ms		11.8			12.5			12.9			13.2	
Max.Theoretical Acceleration	Amax	g's		20.4			21.1			21.5			21.8	
Magnetic attraction	Fa	kN	9.8			14.6			19.7			24.6		
		lbf	2205			3271			4433			5524		
Thermal Resistance														
- coils to external structure	Rth	°C/Watt	0.25				0.18			0.13			0.11	
Max. Allowable Coil Temp.	Tmax	°C	130				130			130			130	

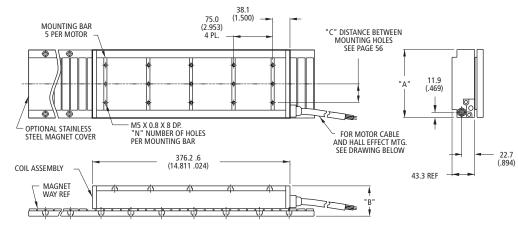
Notes:

 \oplus The motor continuous rated force is measured with the motor coils achieving the motor maximum allowable temperature Tmax. At this operating point the number of watts being dissipated by the coil assembly is equal to the maximum continuous power dissipation Pc. The heat load can be limited to a value below Pc by limiting the continuous rated output force of the motor to a value equal to:

633 • 3400

 Fc = Km x Square Root (Pw); where Pw = the acceptable heat load, in watts, and must be a value below Pc.
 The RMS current needed to produce this force is simply Fc divided by the force constant Kf.
 Alternate windings can be made available. Please consult the Danaher Motion Customer Assistance Center for design options. ③ Maximum Theoretical Acceleration is based on the motors peak force and the motor mass alone. Limitations due to such factors as the additional mass of the load, the bearing type and design, the shock rating of the feedback, the peak current available from the amplifier etc. must be considered to determine the achievable acceleration in each application.

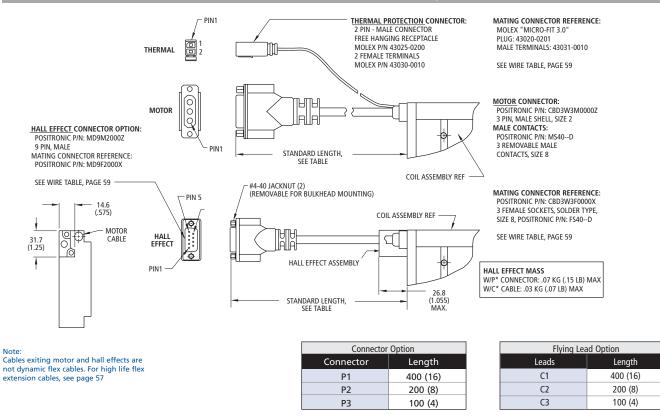
Image: Please see our Application Sizing pages in the back of this publication for more details on sizing and thermal considerations.


DANAHER MOTION is a registered trademark of Danaher Corporation. Danaher Motion makes every attempt to ensure accuracy and reliability of the specifications in this publication. Specifications are subject to change without notice. Danaher Motion provides this information "AS IS" and disclaims all warranties, express or implied, including, but not limited to, implied warranties of merchantability and fitness for a particular purpose. It is the responsibility of the product user to determine the suitability of this product for a specific application. @2004 Danaher Motion.

Tel

29

Non-Cooled IC22-xxx



Resultant airgap = 0.9mm (.036) nominal (0.5mm (.020") minimum) when components are set up to dimension "B" in table below. (Please refer to installation manual for more detail)

- Notes: ① Dimensions in mm (inches)
- Differences unless otherwise specified:
- no decimal place \pm 0.8 (.03) X decimal place \pm 0.1 (.004)
- X decimal place \pm 0.1 (.004) XX decimal place \pm 0.05 (.002)

Dim "B" Motor Coil Coil Width Dim "B" # Holes Non-Cooled Туре "A without cover w/ Magnet cover "N" ICXX-015 54.3±0.1 (2.138±.004) 54.6±0.1 (2.150±.004) IC22-015 $50.0(1.969) \pm 1.0(.04)$ 1 IC22-030 65.0 (2.559) ± 1.0 (.04) ICXX-030 58.3±0.1 (2.295±.004) 58.6±0.1 (2.307±.004) 2 IC22-050 85.0 (3.346) ±.1.0 (.04) ICXX-050 58.3±0.1 (2.295±.004) 58.6±0.1 (2.307±.004) 2 IC22-075 110.0 (4.331) ± 1.0 (.04) ICXX-075 58.3±0.1 (2.295±.004) 58.6±0.1 (2.307±.004) 3 IC22-100 135.0 (5.315) ± 1.0 (.04) 58.3±0.1 (2.295±.004) 58.6±0.1 (2.307±.004) ICXX-100 3 IC22-150 185.0 (7.283) ± 1.5 (.06) ICXX-150 60.3±0.1 (2.374±.004) 60.6±0.1 (2.386±.004) 5 IC22-200 235.0 (9.252) ± 1.5 (.06) ICXX-200 60.3±0.1 (2.374±.004) 60.6±0.1 (2.386±.004) 6 IC22-250 285.0 (11.220) ± 1.5 (.06) ICXX-250 60.3±0.1 (2.374±.004) 60.6±0.1 (2.386±.004) 7

Termination and Hall Effects Options

DANAHER MOTION is a registered trademark of Danaher Corporation. Danaher Motion makes every attempt to ensure accuracy and reliability of the specifications in this publication. Specifications are subject to change without notice. Danaher Motion provides this information "AS IS" and disclaims all warranties, express or implied, including, but not limited to, implied warranties of merchantability and fitness for a particular purpose. It is the responsibility of the product user to determine the suitability of this product for a specific application. @2004 Danaher Motion.

33 Series Ironcore - Non-cooled

Rated Performance	Symbol	Units	IC33-015					IC33-	030			IC33	-050			IC33-	075	
Peak force	Fp	N		50	ô5			112	25			18	875			281	5	
		lbf		12	27			25	3			4	22			63	3	
Continuous force @Tmax	Fc	N		2	16			45	0			8	24			130	1	
see note ①		lbf		4	9			10	1			1	85			29	2	
Motor constant @ 25°C	Km	N/ √W		22	2.3			38.	5			55	5.0			71.	2	
Max. Cont. power dissipation	Pc	W	131					19	2			3	17			47	1	
Electrical Specifications			1															
		Winding Code	A1	A3	A5	A7	A1	A3	A5	A7	A1	A3	A5	A7	A1	A3	A5	A7
Peak current	lp	Arms	11.1	33.3	19.1	57.7	11.1	33.1	19.1	57.3	11.1	33.1	19.1	57.3	11.1	33.1	19.1	57.3
Continuous Current @ Tmax	lc	Arms	3.8 11.4 6.6 19.8			4.0	11.9	6.9	20.6	4.4	13.1	7.6	22.7	4.6	13.8	8.0	23.9	
Electrical resistance																		
@ 25°C±10%	Rm	Ohms L-L					5.8	0.64	1.9	0.21	7.9	0.88	2.6	0.29	10.6	1.2	3.5	0.39
Electrical inductance ±20%	L	mH L-L	27.4 3.0 9.1 1.0 5				50.1	5.6	16.7	1.9	80.2	8.9	26.7	3.0	118	13.1	39.4	4.4
Back EMF constant	Ke	Vpeak/m/s L-L	46.3 15.4 26.7 8.9 9		92.6	30.9	53.5	17.8	154	51.4	89.0	29.7	231	77.1	134	44.5		
@ 25°C±10%		Vpeak/in/sec L-L	1.18	0.39	0.68	0.23	2.35	0.78	1.36	0.45	3.92	1.31	2.26	0.75	5.88	1.96	3.39	1.13
Force constant @ 25°C±10%	Kf	N/Arms	56.7	18.9	32.7	10.9	113	37.8	65.5	21.8	189	62.9	109	36.3	283	94.4	164	54.5
		lbf / Arms	12.7	4.2	7.4	2.5	25.5	8.5	14.7	4.9	42.4	14.1	24.5	8.2	63.7	21.2	36.8	12.3
Mechanical Specifications																		
Coil Assembly Mass ±15%	Mc	kg		5	.0			7.	3			10	0.4			14	.4	
		lbs		1	0.1			16	.1			22	2.9			31	.7	
Magnetic Way Type				МС	015			MC	030			МС	050			МС	075	
Magnetic Way Mass ±15%	Mw	kg/m		2	.5			5.	4			7	.5			10	.1	
		lbs/in		0.	14			0.3	30			0.	42			0.	56	
Figures of Merit & Additio	nal Data																	
Electrical time constant	Te	ms		6	.4			8.	6			10).2			11	.2	
Max.Theoretical Acceleration	Amax	g's		1	1.5			15	.7			18	3.4			19	.9	
Magnetic attraction	Fa	kN	2.2				4.	4			7	.4			11	.0		
		lbf	497				99	1			16	52			24	80		
Thermal Resistance																		
- coils to external structure	Rth	°C/Watt	0.80				0.5	55			0.	33			0.2	22		
Max. Allowable Coil Temp.	Tmax	°C		1	30			13	0			1	30			13	0	

Notes:

 The motor continuous rated force is measured with the motor coils achieving the motor maximum allowable temperature Tmax. At this operating point the number of watts being dissipated by the coil assembly is equal to the maximum continuous power dissipation Pc. The heat load can be limited to a value below Pc by limiting the continuous rated output force of the motor to a value equal to: Fc = Km x Square Root (Pw); where Pw = the acceptable heat load, in watts, and must be a value below Pc.

The RMS current needed to produce this force is simply Fc divided by the force constant Kf.

633 • 3400

② Alternate windings can be made available. Please consult the Danaher Motion Customer Assistance Center for design options.
 ③ Maximum Theoretical Acceleration is based on the motors peak force and the motor mass alone. Limitations due to such factors as the

additional mass of the load, the bearing type and design, the shock rating of the feedback, the peak current available from the amplifier

Web site :

etc. must be considered to determine the achievable acceleration in each application. Please see our Application Sizing pages in the back of this publication for more details on sizing and thermal considerations.

DANAHER MOTION is a registered trademark of Danaher Corporation. Danaher Motion makes every attempt to ensure accuracy and reliability of the specifications in this publication. Specifications are subject to change without notice. Danaher Motion provides this information "AS IS" and disclaims all warranties, express or implied, including, but not limited to, implied warranties of merchantability and fitness for a particular purpose. It is the responsibility of the product user to determine the suitability of this product for a specific application. @2004 Danaher Motion.

www.DanaherMotion.com

Tel

33 Series Ironcore - Non-cooled

Rated Performance	Symbol	Units		IC33	-100			IC33-	·150			IC33	-200			IC33-	250	
Peak force	Fp	Ν		37	50			562	25			75	500			937	'5	
		lbf		84	3			126	65			16	686			210	8	
Continuous force @ Tmax	Fc	Ν		17	96			27	18			37	65			449	6	
see note ①		lbf		40)4			61	1			8	46			101	1	
Motor constant @ 25°C	Km	N/\W	85.1				107	.8			1	27			13	8		
Max. Cont. power dissipation	Pc	W	629				89	7			12	250			150	00		
Electrical Specifications																		
		Winding Code	A1	A3	A5	A7	A1	A3	A5	A7	A1	A3	A5	A7	A1	A3	A5	A7
Peak current	lp	Arms	11.1	33.1	19.1	57.3	11.1	33.1	19.1	57.3	11.1	33.1	19.1	57.3	11.1	33.1	19.1	57.3
Continuous Current @ Tmax	lc	Arms	4.8 14.3 8.2 24.7		4.8	14.4	8.3	24.9	5.0	14.9	8.6	25.9	5.0	14.9	8.6	25.7		
Electrical resistance																		
@ 25°C±10%	Rm	Ohms L-L	13.2 1.5 4.4 0.49 1		18.5	2.1	6.2	0.69	23.9	2.7	8.0	0.89	29.0	3.2	9.7	1.1		
Electrical inductance ±20%	L	mH L-L	156	17.3	52.0	5.8	232	25.8	77.3	8.6	308	34.2	103	11.4	384	42.6	128	14.2
Back EMF constant	Ke	Vpeak/m/s L-L	308	103	178	59.3	463	154	267	89.0	617	206	356	119	741	247	428	143
@ 25°C±10%		Vpeak/in/sec L-L	7.83	2.61	4.52	1.51	11.7	3.92	6.78	2.26	15.7	5.22	9.05	3.02	18.8	6.27	10.9	3.62
Force constant @ 25°C±10%	Kf	N/Arms	378	126	218	72.7	567	189	327	109	756	252	436	145	907	302	524	175
		lbf / Arms	84.9	28.3	49.0	16.3	127	42.5	73.5	24.5	170	56.6	98.1	32.7	204	68.0	118	39.3
Mechanical Specifications																		
Coil Assembly Mass ±15%	Mc	kg		18	3.9			27	.3			35	5.7			44	l.1	
		lbs		41	1.7			60	.2			78	3.7			97	.2	
Magnetic Way Type				MC	100			мс	150			мс	200			МС	250	
Magnetic Way Mass ±15%	Mw	kg/m		12	2.7			20	.7			26	5.8			33	8.2	
		lbs/in		0.	71			1.	16			1.	50			1.	86	
Figures of Merit & Additio	nal Data																	
Electrical time constant	Te	ms		11	.8			12	.5			12	2.9			13	8.2	
Max.Theoretical Acceleration	Amax	g's		20).2			21	.0			2′	1.4			21	.7	
Magnetic attraction	Fa	kN	14.7				22	.1			29	9.4			36	5.8		
		lbf	3305				49	57			66	509			82	62		
Thermal Resistance																		
- coils to external structure	Rth	°C/Watt	0.17					0.	12			0.0	084			0.0	070	
Max. Allowable Coil Temp.	Tmax	°C	130				13	30			1	30			1	30		

Notes:

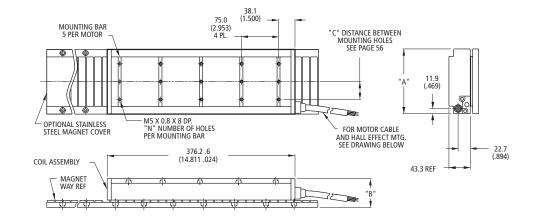
The motor continuous rated force is measured with the motor coils achieving the motor maximum allowable temperature Tmax. At this operating point the number of watts being dissipated by the coil assembly is equal to the maximum continuous power dissipation Pc. The heat load can be limited to a value below Pc by limiting the continuous rated output force of the motor to a value equal to: Fc = Km x Square Root (Pw); where Pw = the acceptable heat load, in watts, and must be a value below Pc.

The RMS current needed to produce this force is simply Fc divided by the force constant Kf.

Alternate windings can be made available. Please consult the Danaher Motion Customer Assistance Center for design options.

Alternate winnings can be made available. Please consult the Dananer Motion Customer Assistance Center for design options.
 Maximum Theoretical Acceleration is based on the motors peak force and the motor mass alone. Limitations due to such factors as the additional mass of the load, the bearing type and design, the shock rating of the feedback, the peak current available from the amplifier etc. must be considered to determine the achievable acceleration in each application.

④ Please see our Application Sizing pages in the back of this publication for more details on sizing and thermal considerations.

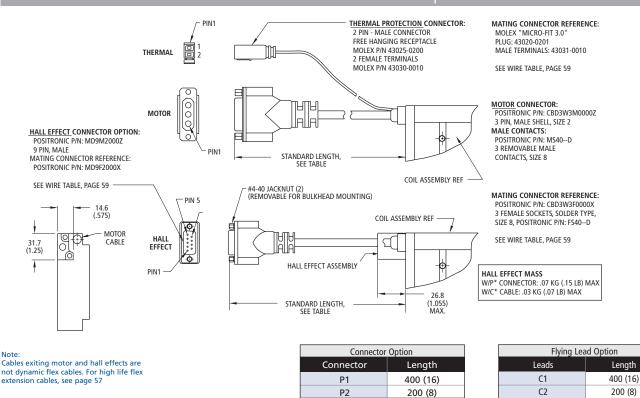

DANAHER MOTION is a registered trademark of Danaher Corporation. Danaher Motion makes every attempt to ensure accuracy and reliability of the specifications in this publication. Specifications are subject to change without notice. Danaher Motion provides this information "AS IS" and disclaims all warranties, express or implied, including, but not limited to, implied warranties of merchantability and fitness for a particular purpose. It is the responsibility of the product user to determine the suitability of this product for a specific application. @2004 Danaher Motion.

633 • 3400

: 540

Tel

Non-Cooled IC33-xxx


Resultant airgap = 0.9mm (.036) nominal (0.5mm (.020") minimum) when components are set up to dimension "B in table below. (Please refer to installation manual for more detail)

Notes:

- ① Dimensions in mm (inches) ② Tolerances unless otherwise specified:
- no decimal place \pm 0.8 (.03) X decimal place \pm 0.1 (.004)
- XX decimal place ± 0.05 (.002)

Motor Coil	Coil Width		Dim "B"	Dim "B"	# Holes
Туре	"A"	Non-Cooled	without cover	w/ Magnet cover	"N"
IC33-015	50.0 (1.969) ± 1.0 (.04)	ICXX-015	54.3±0.1 (2.138±.004)	54.6±0.1 (2.150±.004)	1
IC33-030	65.0 (2.559) ± 1.0 (.04)	ICXX-030	58.3±0.1 (2.295±.004)	58.6±0.1 (2.307±.004)	2
IC33-050	85.0 (3.346) ±.1.0 (.04)	ICXX-050	58.3±0.1 (2.295±.004)	58.6±0.1 (2.307±.004)	2
IC33-075	110.0 (4.331) ± 1.0 (.04)	ICXX-075	58.3±0.1 (2.295±.004)	58.6±0.1 (2.307±.004)	3
IC33-100	135.0 (5.315) ± 1.0 (.04)	ICXX-100	58.3±0.1 (2.295±.004)	58.6±0.1 (2.307±.004)	3
IC33-150	185.0 (7.283) ± 1.5 (.06)	ICXX-150	60.3±0.1 (2.374±.004)	60.6±0.1 (2.386±.004)	5
IC33-200	235.0 (9.252) ± 1.5 (.06)	ICXX-200	60.3±0.1 (2.374±.004)	60.6±0.1 (2.386±.004)	6
IC33-250	285.0 (11.220) ± 1.5 (.06)	ICXX-250	60.3±0.1 (2.374±.004)	60.6±0.1 (2.386±.004)	7

Termination and Hall Effects Options

DANAHER MOTION is a registered trademark of Danaher Corporation. Danaher Motion makes every attempt to ensure accuracy and reliability of the specifications in this publication. Specifications are subject to change without notice. Danaher Motion provides this information "AS IS" and disclaims all warranties, express or implied, including, but not limited to, implied warranties of merchantability and fitness for a particular purpose. It is the responsibility of the product user to determine the suitability of this product for a specific application. @2004 Danaher Motion

P3

100 (4)

www.DanaherMotion.com

C3

100 (4)

Tel

: 540

633 • 3400

Web site

44 Series Ironcore - Non-cooled

Rated Performance	Symbol	Units	IC44-015					IC44-	030			IC44	-050			IC44-	075	
Peak force	Fp	N		75	50			150	00			25	00			375	50	
		lbf		16	59			33	7			56	52			84	3	
Continuous force @ Tmax	Fc	Ν		28	36			59	7			10	96			173	32	
see note ①		lbf		6	4			13	4			24	46			38	9	
Motor constant @ 25°C	Km	N/√W	25.7				44.	.3			63	8.3			82	.4		
Max. Cont. power dissipation	Pc	W		175				25	6			42	23			62	5	
Electrical Specifications																		
		Winding Code				A1	A2	A3	A7	A1	A2	A3	A7	A1	A2	A3	A7	
Peak current	lp	Arms	11.1	22.1	44.1	76.4	11.1	22.1	44.1	76.4	11.1	22.1	44.1	76.4	11.1	22.1	44.1	76.4
Continuous Current @ Tmax	lc	Arms	3.8	7.6	15.1	26.2	3.9	7.9	15.8	27.3	4.4	8.7	17.4	30.2	4.6	9.2	18.3	31.8
Electrical resistance																		
@ 25°C±10%	Rm	Ohms L-L	5.8	1.5	0.36	0.12	7.8	2.0	0.49	0.16	10.6	2.7	0.66	0.22	14.1	3.5	0.88	0.29
Electrical inductance ±20%	L	mH L-L	36.5	9.1	2.3	0.8	66.8	16.7	4.2	1.4	107	26.7	6.7	2.2	158	39.4	9.9	3.3
Back EMF constant	Ke	Vpeak/m/s L-L	61.7	30.9	15.4	8.9	123	61.7	30.9	17.8	206	103	51.4	29.7	308	154	77.1	44.5
@ 25°C±10%		Vpeak/in/sec L-L	1.57	0.78	0.39	0.23	3.14	1.57	0.78	0.45	5.22	2.61	1.31	0.75	7.83	3.92	1.96	1.13
Force constant @ 25°C±10%	Kf	N/Arms	75.6	37.8	18.9	10.9	151	75.6	37.8	21.8	252	126	63.0	36.3	378	189	94.4	54.5
		lbf / Arms	17.0	8.5	4.2	2.5	34.0	17.0	8.5	4.9	56.6	28.3	14.2	8.2	84.9	42.5	21.2	12.3
Mechanical Specifications																		
Coil Assembly Mass ±15%	Mc	kg		6.	4			9.	6			13	.9			19).2	
		lbs		14	.1			21	.2			30	.6			42	2.3	
Magnetic Way Type				MC	015			MC	030			MC	050			MC	075	
Magnetic Way Mass ±15%	Mw	kg/m		2.	5			5.4	4			7.	5			10).1	
		lbs/in		0.	14			0.3	30			0.4	42			0.	56	
Figures of Merit & Additio	nal Data																	
Electrical time constant	Те	ms		6.	3			8.	6			10	.1			11	.2	
Max.Theoretical Acceleration	Amax	g's		11	.9			15	.9			18	.3			19	.9	
Magnetic attraction	Fa	kN	2.9				5.	9			9.	8			14	1.7		
		lbf	661				132	22			22	03			33	05		
Thermal Resistance																		
- coils to external structure	Rth	°C/Watt	0.60				0.4	11			0.2	25			0.	17		
Max. Allowable Coil Temp.	Tmax	°C	130				13	0			13	80			13	30		

Notes:

① The motor continuous rated force is measured with the motor coils achieving the motor maximum allowable temperature Tmax. At this operating point the number of watts being dissipated by the coil assembly is equal to the maximum continuous power dissipation Pc. The heat load can be limited to a value below Pc by limiting the continuous rated output force of the motor to a value equal to: Fc = Km x Square Root (Pw); where Pw = the acceptable heat load, in watts, and must be a value below Pc. The RMS current needed to produce this force is simply Fc divided by the force constant Kf.

 ② Alternate windings can be made available. Please consult the Danaher Motion Customer Assistance Center for design options.
 ③ Maximum Theoretical Acceleration is based on the motors peak force and the motor mass alone. Limitations due to such factors as the additional mass of the load, the bearing type and design, the shock rating of the feedback, the peak current available from the amplifier

etc. must be considered to determine the achievable acceleration in each application. ④ Please see our Application Sizing pages in the back of this publication for more details on sizing and thermal considerations.

DANAHER MOTION is a registered trademark of Danaher Corporation. Danaher Motion makes every attempt to ensure accuracy and reliability of the specifications in this publication. Specifications are subject to change without notice. Danaher Motion provides this information "AS IS" and disclaims all warranties, express or implied, including, but not limited to, implied warranties of merchantability and fitness for a particular purpose. It is the responsibility of the product user to determine the suitability of this product for a specific application. @2004 Danaher Motion.

: 540

Tel

44 Series Ironcore - Non-cooled

Rated Performance	Symbol	Units		IC44			IC44	-150			IC44	-200			IC44	-250		
Peak force	Fp	N		50	000			75	00			10	000			12	500	
		lbf		11	124			16	86			22	48			28	810	
Continuous force @Tmax	Fc	N		23	397			36	17			50	25			60)29	
see note 1		lbf		5	39			81	3			11	30			13	855	
Motor constant @ 25°C	Km	N/√W	98.3					12	24			14	46			1	60	
Max. Cont. power dissipation	Pc	W	840					11	93			16	67			20)19	
Electrical Specifications																		
		Winding Code	A1	A2	A3	A7	A1	A2	A3	A7	A1	A2	A3	A7	A1	A2	A3	A7
Peak current	lp	Arms	11.1	22.1	44.1	76.4	11.1	22.1	44.1	76.4	11.1	22.1	44.1	76.4	11.1	22.1	44.1	76.4
Continuous Current @ Tmax	lc	Arms	4.8	9.5	19.0	33.0	4.8	9.6	19.2	33.2	5.0	10.0	20.0	34.6	5.0	10.0	19.9	34.5
Electrical resistance																		
@ 25°C±10%	Rm	Ohms L-L					24.7	6.2	1.5	0.51	31.8	8.0	2.0	0.66	38.6	9.7	2.4	0.80
Electrical inductance ±20%	L	mH L-L	208 52.1 13.0 4.3 3				309	77.4	19.3	6.4	410	103	25.7	8.6	512	128	32.0	10.7
Back EMF constant	Ke	Vpeak/m/s L-L	411	206	103	59.3	617	308	154	89.0	823	411	206	119	988	494	247	143
@ 25°C±10%		Vpeak/in/sec L-L	10.4	5.22	2.61	1.51	15.7	7.83	3.92	2.26	20.9	10.4	5.22	3.02	25.1	12.5	6.27	3.62
Force constant @ 25°C±10%	Kf	N/Arms	504	252	126	72.7	755	378	189	109	1008	504	252	145	1210	605	302	175
		lbf/Arms	113	56.6	28.3	16.3	170	84.9	42.5	24.5	227	113	56.6	32.7	272	136	68.0	39.3
Mechanical Specifications																		
Coil Assembly Mass ±15%	Mc	kg		2	5.0			36	i.2			47	7.4			58	8.5	
		lbs		5	5.1			79	.8			1(04			12	29	
Magnetic Way Type				M	C100			МС	150			MC	200			MC	250	
Magnetic Way Mass ±15%	Mw	kg/m		1	2.7			20	.7			26	5.8			33	.2	
		lbs/in		0	.71			1.	16			1.	50			1.	86	
Figures of Merit & Additio	nal Data																	
Electrical time constant	Te	ms		1	1.8			12	.5			12	2.9			13	.3	
Max.Theoretical Acceleration	Amax	g's		2	0.4			21	.1			21	1.5			21	.8	
Magnetic attraction	Fa	kN	19.6				29	.4			39	9.4			49	.2		
		lbf	4406				66	09			88	58			11(061		
Thermal Resistance																		
- coils to external structure	Rth	°C/Watt	0.13					0.0	88			0.0	063			0.0	52	
Max. Allowable Coil Temp.	Tmax	°C		1	30			13	30			13	30			13	30	
			1	_	_									_	1			

Notes:

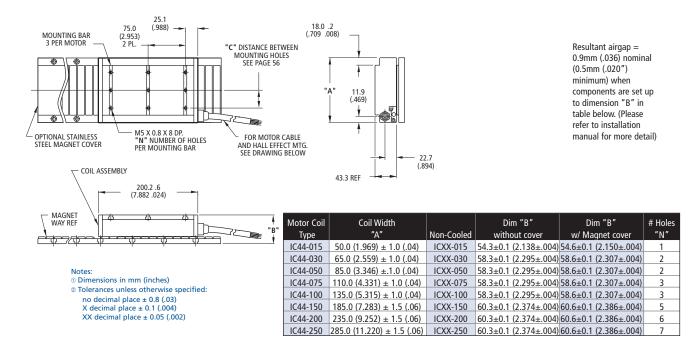
 \odot The motor continuous rated force is measured with the motor coils achieving the motor maximum allowable temperature Tmax. At this operating point the number of watts being dissipated by the coil assembly is equal to the maximum continuous power dissipation Pc. The heat load can be limited to a value below Pc by limiting the continuous rated output force of the motor to a value equal to: Fc = Km x Square Root (Pw); where Pw = the acceptable heat load, in watts, and must be a value below Pc. The RMS current needed to produce this force is simply Fc divided by the force constant Kf.
 Alternate windings can be made available. Please consult the Danaher Motion Customer Assistance Center for design options.

③ Maximum Theoretical Acceleration is based on the motors peak force and the motor mass alone. Limitations due to such factors as the additional mass of the load, the bearing type and design, the shock rating of the feedback, the peak current available from the amplifier etc. must be considered to determine the achievable acceleration in each application.

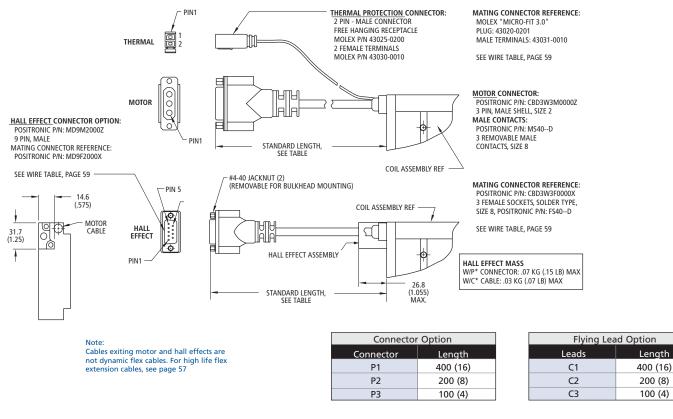
Web site :

633 • 3400

Image: Please see our Application Sizing pages in the back of this publication for more details on sizing and thermal considerations.


DANAHER MOTION is a registered trademark of Danaher Corporation. Danaher Motion makes every attempt to ensure accuracy and reliability of the specifications in this publication. Specifications are subject to change without notice. Danaher Motion provides this information "AS IS" and disclaims all warranties, express or implied, including, but not limited to, implied warranties of merchantability and fitness for a particular purpose. It is the responsibility of the product user to determine the suitability of this product for a specific application. @2004 Danaher Motion.

www.DanaherMotion.com


Tel

Kollmorgen

Non-Cooled IC44-xxx

Termination and Hall Effects Options

DANAHER MOTION is a registered trademark of Danaher Corporation. Danaher Motion makes every attempt to ensure accuracy and reliability of the specifications in this publication. Specifications are subject to change without notice. Danaher Motion provides this information "AS IS" and disclaims all warranties, express or implied, including, but not limited to, implied warranties of merchantability and fitness for a particular purpose. It is the responsibility of the product user to determine the suitability of this product for a specific application. @2004 Danaher Motion.

Tel

Length

200 (8)

100 (4)

55 Series Ironcore - Non-cooled

Rated Performance	Symbol	Units	IC55-015				IC55-030				IC55-050			
Peak force	Fp	N	940			1875 422				3125				
		lbf	211							703				
Continuous force @Tmax	Fc	N	359				748				1374			
see note 1		lbf	81				168				309			
Motor constant @ 25°C	Km	N/ \vvv	28.9				49.7				71.0			
Max. Cont. power dissipation	Pc	W	219				320				530			
Electrical Specifications														
		Winding Code	A1	A3	A5	A7	A1	A3	A5	A7	A1	A3	A5	A7
Peak current	lp	Arms	11.1	55.5	19.2	96.1	11.1	55.5	19.2	96.1	11.1	55.5	19.2	96.1
Continuous Current @ Tmax	lc	Arms	3.8	19.0	6.6	32.9	4.0	19.8	6.9	34.3	4.4	21.8	7.6	37.8
Electrical resistance														
@ 25°C±10%	Rm	Ohms L-L	7.2	0.29	2.4	0.10	9.7	0.39	3.2	0.13	13.2	0.53	4.4	0.18
Electrical inductance ±20%	L	mH L-L	45.6	1.8	15.2	0.6	83.5	3.3	27.8	1.1	134	5.3	44.5	1.8
Back EMF constant	Ke	Vpeak/m/s L-L	77.2	15.4	44.5	8.9	154	30.9	89.1	17.8	257	51.4	148	29.7
@ 25°C±10%		Vpeak/in/sec L-L	1.96	0.39	1.13	0.23	3.92	0.78	2.26	0.45	6.53	1.31	3.77	0.75
Force constant @ 25°C±10%	Kf	N/Arms	94.5	18.9	54.6	10.9	189	37.8	109	21.8	315	62.9	182	36.3
		lbf/Arms	21.2	4.2	12.3	2.5	42.5	8.5	24.5	4.9	70.7	14.1	40.8	8.2
Mechanical Specifications														
Coil Assembly Mass ±15%	Mc	kg	8.0				12.0				17.3			
		lbs	17.6				26.5				38.1			
Magnetic Way Type			MC015				MC030				MC050			
Magnetic Way Mass ±15%	Mw	kg/m	2.5				5.4				7.5			
		lbs/in	0.14			0.30				0.42				
Figures of Merit & Additio	nal Data													
Electrical time constant	Те	ms	6.3				8.6				10.1			
Max.Theoretical Acceleration	Amax	g's	12.0				15.9			18.4				
Magnetic attraction	Fa	kN	3.7 827			7.4			12.3					
		lbf				1652				2754				
Thermal Resistance														
- coils to external structure	Rth	°C/Watt	0.48				0.33				0.20			
Max. Allowable Coil Temp.	Tmax	°C	130				130				130			

Notes:

① The motor continuous rated force is measured with the motor coils achieving the motor maximum allowable temperature Tmax. At this operating point the number of watts being dissipated by the coil assembly is equal to the maximum continuous power dissipation Pc. The heat load can be limited to a value below Pc by limiting the continuous rated output force of the motor to a value equal to: Fc = Km x Square Root (Pw); where Pw = the acceptable heat load, in watts, and must be a value below Pc.

The RMS current needed to produce this force is simply Fc divided by the force constant Kf.

633 • 3400

② Alternate windings can be made available. Please consult the Danaher Motion Customer Assistance Center for design options.
 ③ Maximum Theoretical Acceleration is based on the motors peak force and the motor mass alone. Limitations due to such factors as the

additional mass of the load, the bearing type and design, the shock rating of the feedback, the peak current available from the amplifier

Web site :

etc. must be considered to determine the achievable acceleration in each application. ④ Please see our Application Sizing pages in the back of this publication for more details on sizing and thermal considerations.

DANAHER MOTION is a registered trademark of Danaher Corporation. Danaher Motion makes every attempt to ensure accuracy and reliability of the specifications in this publication. Specifications are subject to change without notice. Danaher Motion provides this information "AS IS" and disclaims all warranties, express or implied, including, but not limited to, implied warranties of merchantability and fitness for a particular purpose. It is the responsibility of the product user to determine the suitability of this product for a specific application. @2004 Danaher Motion.

www.DanaherMotion.com

Tel

55 Series Ironcore - Non-cooled

Rated Performance	Symbol	Units	IC55-015					IC55	-030		IC55-050				
Peak force	Fp	N		94	40			18	75			31	25		
		lbf		2	11			42	22			7	03		
Continuous force @ Tmax	Fc	Ν		3	59			74	48			13	74		
see note ①		lbf		8	1			10	58			3	09		
Motor constant @ 25°C	Km	N/√W		28	3.9			49	9.7		71.0				
Max. Cont. power dissipation	Pc	W		2	19			32	20		530				
Electrical Specifications															
		Winding Code	A1	A3	A5	A7	A1	A3	A5	A7	A1	A3	A5	A7	
Peak current	lp	Arms	11.1	55.5	19.2	96.1	11.1	55.5	19.2	96.1	11.1	55.5	19.2	96.1	
Continuous Current @ Tmax	lc	Arms	3.8	19.0	6.6	32.9	4.0	19.8	6.9	34.3	4.4	21.8	7.6	37.8	
Electrical resistance															
@ 25°C±10%	Rm	Ohms L-L	7.2	0.29	2.4	0.10	9.7	0.39	3.2	0.13	13.2	0.53	4.4	0.18	
Electrical inductance ±20%	L	mH L-L	45.6	1.8	15.2	0.6	83.5	3.3	27.8	1.1	134	5.3	44.5	1.8	
Back EMF constant	Ke	Vpeak/m/s L-L	77.2	15.4	44.5	8.9	154	30.9	89.1	17.8	257	51.4	148	29.7	
@ 25°C±10%		Vpeak/in/sec L-L	1.96	0.39	1.13	0.23	3.92	0.78	2.26	0.45	6.53	1.31	3.77	0.75	
Force constant @ 25°C±10%	Kf	N/Arms	94.5	18.9	54.6	10.9	189	37.8	109	21.8	315	62.9	182	36.3	
		lbf/Arms	21.2	4.2	12.3	2.5	42.5	8.5	24.5	4.9	70.7	14.1	40.8	8.2	
Mechanical Specifications															
Coil Assembly Mass ±15%	Mc	kg		8	.0			1	2.0			1	7.3		
		lbs		1	7.6			2	6.5			3	8.1		
Magnetic Way Type				м	015			M	2030			M	2050		
Magnetic Way Mass ±15%	Mw	kg/m		2	.5			5	5.4			7	7.5		
		lbs/in		0.	.14			0	.30			0	.42		
Figures of Merit & Additio	nal Data														
Electrical time constant	Те	ms		6	.3			8	3.6			1	0.1		
Max.Theoretical Acceleration	Amax	g's	12.0					1	5.9		18.4				
Magnetic attraction	Fa	kN		3	.7			7	7.4			12.3			
		lbf		8	27			10	652		2754				
Thermal Resistance															
- coils to external structure	Rth	°C/Watt		0	48			0	.33		0.20				
Max. Allowable Coil Temp.	Tmax	°C		1	30			1	30			1	30		

Notes:

The motor continuous rated force is measured with the motor coils achieving the motor maximum allowable temperature Tmax. At this operating point the number of watts being dissipated by the coil assembly is equal to the maximum continuous power dissipation Pc. The heat load can be limited to a value below Pc by limiting the continuous rated output force of the motor to a value equal to: Fc = Km x Square Root (Pw); where Pw = the acceptable heat load, in watts, and must be a value below Pc. The RMS current needed to produce this force is simply Fc divided by the force constant Kf.
 Alternate windings can be made available. Please consult the Danaher Motion Customer Assistance Center for design options.

Alternate windings can be made available. Please consult the Danaher Motion Customer Assistance Center for design options.
 Maximum Theoretical Acceleration is based on the motors peak force and the motor mass alone. Limitations due to such factors as the additional mass of the load, the bearing type and design, the shock rating of the feedback, the peak current available from the amplifier etc. must be considered to determine the achievable acceleration in each application.

④ Please see our Application Sizing pages in the back of this publication for more details on sizing and thermal considerations.

DANAHER MOTION is a registered trademark of Danaher Corporation. Danaher Motion makes every attempt to ensure accuracy and reliability of the specifications in this publication. Specifications are subject to change without notice. Danaher Motion provides this information "AS IS" and disclaims all warranties, express or implied, including, but not limited to, implied warranties of merchantability and fitness for a particular purpose. It is the responsibility of the product user to determine the suitability of this product for a specific application. @2004 Danaher Motion.

633 • 3400

: 540

Tel

55 Series Ironcore - Non-cooled

Rated Performance	Symbol	Units		IC55-	200			IC55	-250				
Peak force	Fp	N		125	00			15	525				
		lbf		281	0			35	13				
Continuous force @ Tmax	Fc	N	11.1 55.5 19.2 96.1 11.1 55.5 19.2 96.1 5.0 25.0 8.7 43.3 5.0 24.8 8.6 42.9 39.8 1.6 13.3 0.53 48.3 1.9 16.1 0.64 513 20.5 171 6.8 639 25.6 213 8.5 -L 1028 206 594 119 1235 247 713 143										
see note ①		lbf		141	7			16	85				
Motor constant @ 25°C	Km	N/√W		16	3			17	78				
Max. Cont. power dissipation	Pc	W		210	0			25	00				
Electrical Specifications									685 78 500 A5 A7 19.2 96. 8.6 42. 16.1 0.6 213 8.1 713 14 18.1 3.6 873 17 196 39. 73 161 C250 33.2 1.8 3.1.5				
		Winding Code	A1	A3	A5	A7	A1	A3	A5	A7			
Peak current	lp	Arms	11.1	55.5	19.2	96.1	11.1	55.5	19.2	96.1			
Continuous Current @Tmax	lc	Arms	5.0	25.0	8.7	43.3	5.0	24.8	8.6	42.9			
Electrical resistance													
@ 25°C±10%	Rm	Ohms L-L	39.8	1.6	13.3	0.53	48.3	1.9	16.1	0.64			
Electrical inductance ±20%	L	mH L-L	513	20.5	171	6.8	639	25.6	213	8.5			
Back EMF constant	Ke	Vpeak/m/s L-L	1028	206	594	119	1235	247	713	143			
@ 25°C±10%		Vpeak/in/sec L-L	26.1	5.22	15.1	3.02	31.4	6.27	18.1	3.62			
Force constant @ 25°C±10%	Kf	N/Arms	1260	252	727	145	1512	302	873	175			
		lbf / Arms	283	56.6	163	32.7	340	68.0	196	39.3			
Mechanical Specifications													
Coil Assembly Mass ±15%	Mc	kg		59)			7	'3				
		lbs		13	0			1	61				
Magnetic Way Type				MC2	200			МС	250				
Magnetic Way Mass ±15%	Mw	kg/m		26.	8			33	3.2				
		lbs/in		1.5	0			1.	86				
Figures of Merit & Additio	nal Data												
Electrical time constant	Те	ms		12.	9			13	3.2				
Max.Theoretical Acceleration	Amax	g's		21.	6			21	1.8				
Magnetic attraction	Fa	kN		49.	3			6	1.5				
		lbf		110	72			13	826				
Thermal Resistance													
- coils to external structure	Rth	°C/Watt		0.0	50			0.0	042				
Max. Allowable Coil Temp.	Tmax	°C		13	0		130						

Notes:

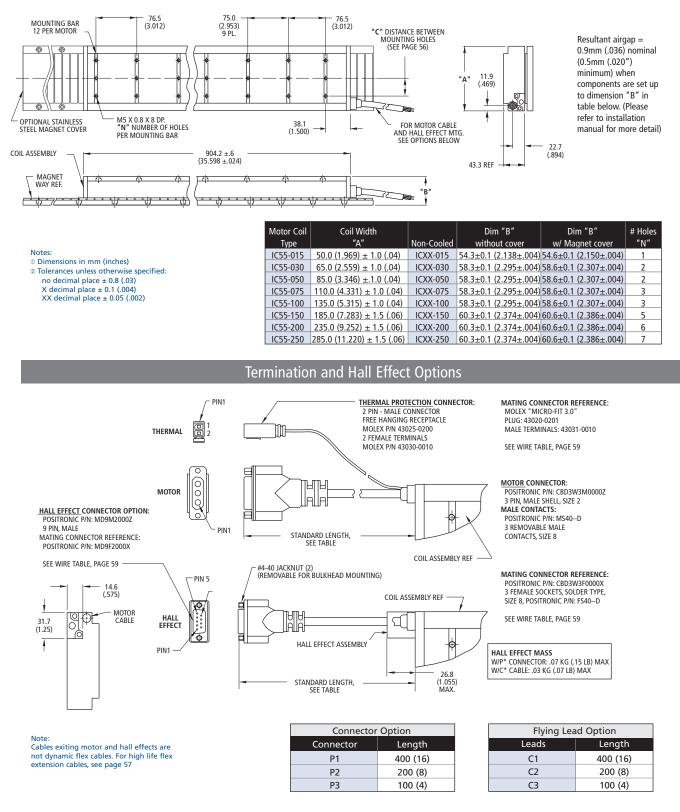
1 The motor continuous rated force is measured with the motor coils achieving the motor maximum allowable temperature Tmax. At this operating point the number of watts being dissipated by the coil assembly is equal to the maximum continuous power dissipation Pc. The heat load can be limited to a value below Pc by limiting the continuous rated output force of the motor to a value equal to: $Fc = Km \times Square Root (Pw)$; where Pw = the acceptable heat load, in watts, and must be a value below Pc.

633 • 3400

The RMS current needed to produce this force is simply Fc divided by the force constant Kf. 2 Alternate windings can be made available. Please consult the Danaher Motion Customer Assistance Center for design options. 3 Maximum Theoretical Acceleration is based on the motors peak force and the motor mass alone. Limitations due to such factors as the

additional mass of the load, the bearing type and design, the shock rating of the feedback, the peak current available from the amplifier etc. must be considered to determine the achievable acceleration in each application.

Web site :


④ Please see our Application Sizing pages in the back of this publication for more details on sizing and thermal considerations.

DANAHER MOTION is a registered trademark of Danaher Corporation. Danaher Motion makes every attempt to ensure accuracy and reliability of the specifications in this publication. Specifications are subject to change without notice. Danaher Motion provides this information "AS IS" and disclaims all warranties, express or implied, including, but not limited to, implied warranties of merchantability and fitness for a particular purpose. It is the responsibility of the product user to determine the suitability of this product for a specific application. @2004 Danaher Motion.

www.DanaherMotion.com

Tel

Non-Cooled IC55-xxx

DANAHER MOTION is a registered trademark of Danaher Corporation. Danaher Motion makes every attempt to ensure accuracy and reliability of the specifications in this publication. Specifications are subject to change without notice. Danaher Motion provides this information "AS IS" and disclaims all warranties, express or implied, including, but not limited to, implied warranties of merchantability and fitness for a particular purpose. It is the responsibility of the product user to determine the suitability of this product for a specific application. @2004 Danaher Motion.

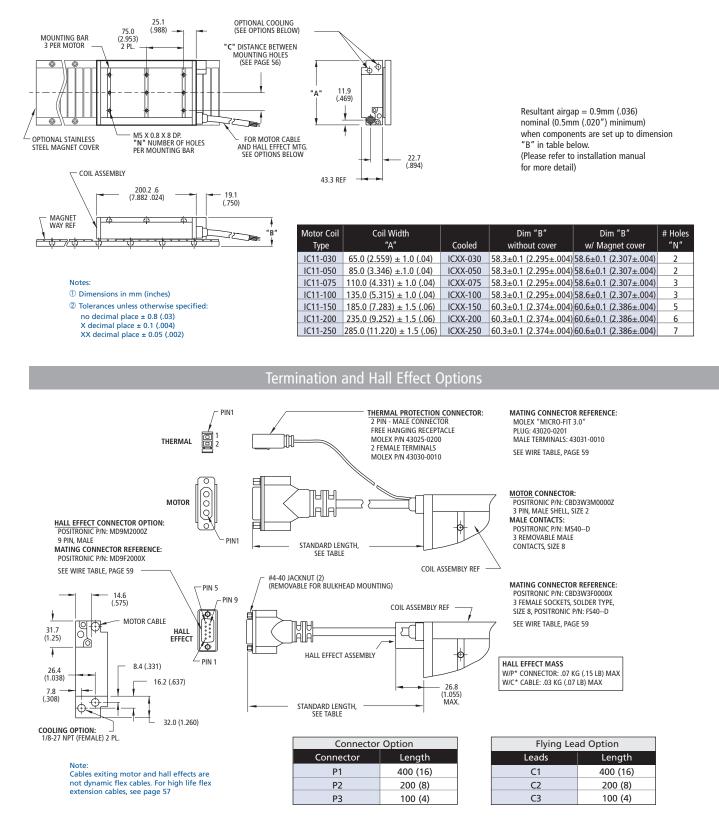
Rated Performance	Symbol	Units	IC1 ²	1-030	IC11	-050	IC11	-075	IC11	-100	IC11	-150	IC11	200	IC11	-250
Peak force	Fp	Ν	3	75	62	25	94	10	12	50	18	75	250	00	31	25
		lbf	8	34	14	41	21	1	28	31	42	22	56	2	70	03
Continuous force @ Tmax	Fc	Ν	2	96	50)2	75	54	10	06	14	90	199	91	24	10
see note ①		lbf	(66	1'	13	16	59	226		335		448		54	42
Motor constant @ 25°C	Km	N/√W	1	9.3	28	8.6	37	.3	45	5.0	55	.7	65	.7	71	.8
Max. Cont. power dissipation	Pc	W	3	19	43	34	57	77	72	24	10	10	129	96	15	91
Electrical Specifications																
		Winding Code	A1	A5	A1	A5	A1	A5	A1	A5	A1	A5	A1	A5	A1	A5
Peak current	lp	Arms	13.8	23.9	13.8	23.9	13.8	23.9	13.8	23.9	13.8	23.9	13.8	23.9	13.8	23.9
Continuous Current @ Tmax	lc	Arms	9.7	16.9	9.9	17.2	9.9	17.1	9.9	17.2	9.8	17.0	9.8	17.0	9.9	17.2
Electrical resistance																
@ 25°C±10%	Rm	Ohms L-L	1.6	0.53	2.1	0.70	2.8	0.93	3.5	1.2	5.0	1.7	6.4	2.1	7.7	2.6
Electrical inductance ±20%	L	mH L-L	10.3	3.4	16.5	5.5	24.4	8.1	32.1	10.7	47.7	15.9	63.3	21.1	78.9	26.3
Back EMF constant	Ke	Vpeak/m/s L-L	24.8	14.3	41.4	23.9	62.2	35.9	82.9	47.8	124	71.7	166	95.7	199	115
@ 25°C±10%		Vpeak/in/sec L-L	0.63	0.36	1.05	0.61	1.58	0.91	2.11	1.22	3.16	1.82	4.21	2.43	5.05	2.91
Force constant @ 25°C±10%	Kf	N/Arms	30.4	17.6	50.7	29.3	76.2	44.0	102	58.6	152	87.9	203	117	243	141
		lbf / Arms	6.8	3.9	11.4	6.6	17.1	9.9	22.8	13.2	34.2	19.8	45.7	26.4	54.7	31.6
Mechanical Specifications																
Coil Assembly Mass ±15%	Mc	kg	2	.5	3	.6	5	.0	6	.5	9	.4	12	2.3	15	5.2
		lbs	5	.5	7	.9	1	1.0	14	4.3	20).7	27	7.1	33	8.5
Magnetic Way Type			мо	030	мс	050	мс	075	мс	100	MC	150	мс	200	MC	250
Magnetic Way Mass ±15%	Mw	kg/m	5	.4	7	.5	1(D.1	12	2.7	20).7	26	5.8	33	8.2
		lbs/in	0.	.30	0.	42	0.	56	0.	71	1.	16	1.	50	1.	86
Figures of Merit & Additio	nal Data															
Electrical time constant	Те	ms	6	.4	7	.9	8	.7	9	.2	9	.5	9	.9	10).2
Max.Theoretical Acceleration	Amax	g's	1!	5.3	17	7.7	19	9.2	19	9.6	20).3	20	0.7	21	.0
Magnetic attraction	Fa	kN	1	.4	2	.4	3	.7	4	.9	7	.3	9	.9	12	2.3
		lbf	3	24	54	46	8	21	11	02	16	39	22	214	27	61
Thermal Resistance																
- coils to external structure	Rth	°C/Watt	0.	.33	0.	24	0.	18	0.	15	0.	10	0.0	081	0.0	66
Max. Allowable Coil Temp.	Tmax	°C	1	30	1.	30	1	30	1	30	13	30	1	30	13	30

Notes:

0 The motor continuous rated force is measured with the motor coils achieving the motor maximum allowable temperature Tmax. At this operating point the number of watts being dissipated by the coil assembly is equal to the maximum continuous power dissipation Pc. The heat load can be limited to a value below Pc by limiting the continuous rated output force of the motor to a value equal to: Fc = Km x Square Root (Pw); where Pw = the acceptable heat load, in watts, and must be a value below Pc.

633 • 3400

The RMS current needed to produce this force is simply Fc divided by the force constant Kf.
2 Alternate windings can be made available. Please consult the Danaher Motion Customer Assistance Center for design options.


③ Maximum Theoretical Acceleration is based on the motors peak force and the motor mass alone. Limitations due to such factors as the additional mass of the load, the bearing type and design, the shock rating of the feedback, the peak current available from the amplifier etc. must be considered to determine the achievable acceleration in each application.
 Please see our Application Sizing pages in the back of this publication for more details on sizing and thermal considerations.

DANAHER MOTION is a registered trademark of Danaher Corporation. Danaher Motion makes every attempt to ensure accuracy and reliability of the specifications in this publication. Specifications are subject to change without notice. Danaher Motion provides this information "AS IS" and disclaims all warranties, express or implied, including, but not limited to, implied warranties of merchantability and fitness for a particular purpose. It is the responsibility of the product user to determine the suitability of this product for a specific application. @2004 Danaher Motion.

Tel

Cooled IC11-xxx

DANAHER MOTION is a registered trademark of Danaher Corporation. Danaher Motion makes every attempt to ensure accuracy and reliability of the specifications in this publication. Specifications are subject to change without notice. Danaher Motion provides this information "AS IS" and disclaims all warranties, express or implied, including, but not limited to, implied warranties of merchantability and fitness for a particular purpose. It is the responsibility of the product user to determine the suitability of this product for a specific application. ©2004 Danaher Motion.

41

Rated Performance	Symbol	Units	IC22-030			1	IC22-05	0		IC22-07	5	IC22-100			
Peak force	Fp	Ν		750			1250			1875			2500		
		lbf		169			281			422			562		
Continuous force @Tmax	Fc	Ν		603			1005			1493			1995		
see note 1		lbf		136			226			336		448			
Motor constant @ 25°C	Km	N/√W		28.3			40.5			52.2					
Max. Cont. power dissipation	Pc	W		640			868		1154						
Electrical Specifications															
		Winding Code	A1	A2	A6	A1	A2	A6	A1	A2	A6	A1	A2	A6	
Peak current	lp	Arms	13.8	27.6	47.8	13.8	27.6	47.8	13.8	27.6	47.8	13.8	27.6	47.8	
Continuous Current @Tmax	lc	Arms	9.9	19.8	34.3	9.9	19.8	34.3	9.8	19.6	34.0	9.8	19.6	34.0	
Electrical resistance															
@25°C±10%	Rm	Ohms L-L	3.1	0.78	0.26	4.2	1.1	0.35	5.7	1.4	0.48	7.1	1.8	0.59	
Electrical inductance ±20%	L	mH L-L	20.6	5.2	1.7	33.0	8.3	2.8	48.6	12.2	4.1	64.1	16.0	5.3	
Back EMF constant	Ke	Vpeak/m/s L-L	49.7	24.9	14.4	82.9	41.4	23.9	124	62.2	35.9	166	83.1	48.0	
@25°C±10%		Vpeak/in/sec L-L	1.26	0.63	0.36	2.11	1.05	0.61	3.16	1.58	0.91	4.22	2.11	1.22	
Force constant @25°C±10%	Kf	N/Arms	60.9	30.5	17.6	102	50.8	29.3	152	76.2	44.0	203	102	58.7	
		lbf/Arms	13.7	6.8	4.0	22.8	11.4	6.6	34.2	17.1	9.9	45.7	22.9	13.2	
Mechanical Specifications															
Coil Assembly Mass ±15%	Mc	kg		4.8			6.9			9.6			12.5		
		lbs		10.6			15.2			21.2			27.6		
Magnetic Way Type				MC030	1		MC050			MC075			MC100		
Magnetic Way Mass ±15%	Mw	kg/m		5.4			7.5			10.1			12.7		
		lbs/in		0.30			0.42			0.56			0.71		
Figures of Merit & Additio	nal Data														
Electrical time constant	Te	ms		6.6			7.9			8.5			9.0		
Max.Theoretical Acceleration	Amax	g's		15.9			18.5			19.9			20.4		
Magnetic attraction	Fa	kN		2.9			4.9			7.3		9.8			
		lbf		654			1090			1637		2205			
Thermal Resistance															
- coils to external structure	Rth	°C/Watt		0.16			0.12			0.091		0.073			
Max. Allowable Coil Temp.	Tmax	°C		130			130			130			130		

Notes:

① The motor continuous rated force is measured with the motor coils achieving the motor maximum allowable temperature Tmax. At this operating point the number of watts being dissipated by the coil assembly is equal to the maximum continuous power dissipation Pc. The heat load can be limited to a value below Pc by limiting the continuous rated output force of the motor to a value equal to: Fc = Km x Square Root (Pw); where Pw = the acceptable heat load, in watts, and must be a value below Pc. The RMS current needed to produce this force is simply Fc divided by the force constant Kf

The RMS current needed to produce this force is simply Fc divided by the force constant Kf.
③ Alternate windings can be made available. Please consult the Danaher Motion Customer Assistance Center for design options.

③ Maximum Theoretical Acceleration is based on the motors peak force and the motor mass alone. Limitations due to such factors as the additional mass of the load, the bearing type and design, the shock rating of the feedback, the peak current available from the amplifier etc. must be considered to determine the achievable acceleration in each application.

I Please see our Application Sizing pages in the back of this publication for more details on sizing and thermal considerations.

633 • 3400

DANAHER MOTION is a registered trademark of Danaher Corporation. Danaher Motion makes every attempt to ensure accuracy and reliability of the specifications in this publication. Specifications are subject to change without notice. Danaher Motion provides this information "AS IS" and disclaims all warranties, express or implied, including, but not limited to, implied warranties of merchantability and fitness for a particular purpose. It is the responsibility of the product user to determine the suitability of this product for a specific application. @2004 Danaher Motion.

Tel

Rated Performance	Symbol	Units	IC22-150				IC22-20	D	IC22-250				
Peak force	Fp	N		3750			5000			6250			
		lbf		843			1124			1405			
Continuous force @ Tmax	Fc	N		2996			4023			4806			
see note 1)		lbf		674			904			1080			
Motor constant @ 25°C	Km	N/VW		79.3			93.3			101			
Max. Cont. power dissipation	Pc	W		2019			2625			3182			
Electrical Specifications													
		Winding Code	A1	A2	A6	A1	A2	A6	A1	A2	A6		
Peak current	lp	Arms	13.8	27.6	47.8	13.8	27.6	47.8	13.8	27.6	47.8		
Continuous Current @ Tmax	lc	Arms	9.8	19.7	34.1	9.9	19.8	34.3	9.9	19.7	34.2		
Electrical resistance													
@ 25°C±10%	Rm	Ohms L-L	9.9	2.5	0.83	12.7	3.2	1.1	15.5	3.9	1.3		
Electrical inductance ±20%	L	mH L-L	95.4	23.9	8.0	127	31.6	10.5	158	39.4	13.1		
Back EMF constant	Ke	Vpeak/m/s L-L	249	124	71.8	332	166	95.7	398	199	115		
@ 25°C±10%		Vpeak/in/sec L-L	6.32	3.16	1.82	8.42	4.21	2.43	10.1	5.05	2.91		
Force constant @ 25°C±10%	Kf	N/Arms	305	152	87.9	406	203	117	487	243	141		
		lbf / Arms	68.5	34.2	19.8	91.3	45.7	26.4	109	54.7	31.6		
Mechanical Specifications													
Coil Assembly Mass ±15%	Mc	kg		18.1			23.7			29.3			
		lbs		39.9			52.2			64.6			
Magnetic Way Type				MC150			MC200			MC250			
Magnetic Way Mass ±15%	Mw	kg/m		20.7			26.8			33.2			
		lbs/in		1.16			1.50			1.86			
Figures of Merit & Additio	nal Data												
Electrical time constant	Те	ms		9.6			10.0			10.2			
Max.Theoretical Acceleration	Amax	g's		21.1			21.5			21.8			
Magnetic attraction	Fa	kN		14.6			19.7			24.6			
		lbf		3271			4433			5524			
Thermal Resistance													
- coils to external structure	Rth	°C/Watt		0.052			0.040			0.033			
Max. Allowable Coil Temp.	Tmax	°C		130			130			130			

Notes: ① The motor continuous rated force is measured with the motor coils achieving the motor maximum allowable temperature Tmax. At this operating point the number of watts being dissipated by the coil assembly is equal to the maximum continuous power dissipation Pc. The heat load can be limited to a value below Pc by limiting the continuous rated output force of the motor to a value equal to: $Fc = Km \times Square Root (Pw)$; where Pw = the acceptable heat load, in watts, and must be a value below Pc. The RMS current needed to produce this force is simply Fc divided by the force constant Kf.
 Alternate windings can be made available. Please consult the Danaher Motion Customer Assistance Center for design options.
 Maximum Theoretical Acceleration is based on the motors peak force and the motor mass alone. Limitations due to such factors as the

additional mass of the load, the bearing type and design, the shock rating of the feedback, the peak current available from the amplifier etc. must be considered to determine the achievable acceleration in each application.

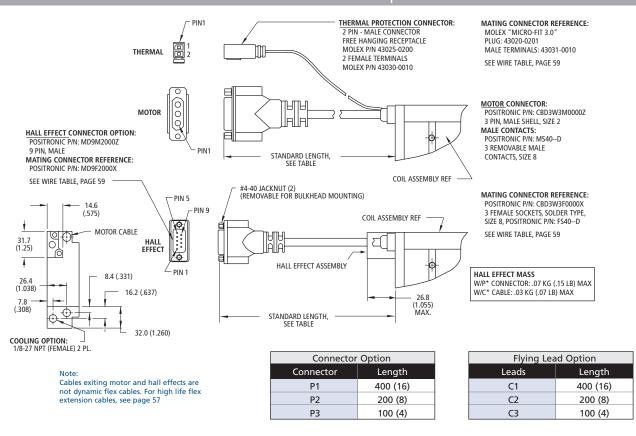

Please see our Application Sizing pages in the back of this publication for more details on sizing and thermal considerations.

DANAHER MOTION is a registered trademark of Danaher Corporation. Danaher Motion makes every attempt to ensure accuracy and reliability of the specifications in this publication. Specifications are subject to change without notice. Danaher Motion provides this information "AS IS" and disclaims all warranties, express or implied, including, but not limited to, implied warranties of merchantability and fitness for a particular purpose. It is the responsibility of the product user to determine the suitability of this product for a specific application. @2004 Danaher Motion.

: 540

Tel

Cooled IC22-xxx



Resultant airgap = 0.9mm (.036) nominal (0.5mm (.020") minimum) when components are set up to dimension "B" in table below. (Please refer to installation manual for more detail)

Notes: ⁽¹⁾ Dimensions in mm (inches)
② Tolerances unless otherwise specified:
no decimal place ± 0.8 (.03)
X decimal place ± 0.1 (.004)
XX decimal place ± 0.05 (.002)

Type "A" Cooled1 without cover w/ Magnet cover	"N"
IC22-030 65.0 (2.559) ± 1.0 (.04) ICXX-030 58.3±0.1 (2.295±.004) 58.6±0.1 (2.307±.004)	2
IC22-050 85.0 (3.346) ±.1.0 (.04) ICXX-050 58.3±0.1 (2.295±.004) 58.6±0.1 (2.307±.004)	2
IC22-075 110.0 (4.331) ± 1.0 (.04) ICXX-075 58.3±0.1 (2.295±.004) 58.6±0.1 (2.307±.004)	3
IC22-100 135.0 (5.315) ± 1.0 (.04) ICXX-100 58.3±0.1 (2.295±.004) 58.6±0.1 (2.307±.004)	3
IC22-150 185.0 (7.283) ± 1.5 (.06) ICXX-150 60.3±0.1 (2.374±.004) 60.6±0.1 (2.386±.004)	5
IC22-200 235.0 (9.252) ± 1.5 (.06) ICXX-200 60.3±0.1 (2.374±.004) 60.6±0.1 (2.386±.004)	6
IC22-250 285.0 (11.220) ± 1.5 (.06) ICXX-250 60.3±0.1 (2.374±.004) 60.6±0.1 (2.386±.004)	7

Termination and Effects Options

DANAHER MOTION is a registered trademark of Danaher Corporation. Danaher Motion makes every attempt to ensure accuracy and reliability of the specifications in this publication. Specifications are subject to change without notice. Danaher Motion provides this information "AS IS" and disclaims all warranties, express or implied, including, but not limited to, implied warranties of merchantability and fitness for a particular purpose. It is the responsibility of the product user to determine the suitability of this product for a specific application. @2004 Danaher Motion.

www.DanaherMotion.com

Web site :

Tel

: 540

633 • 3400

Rated Performance	Symbol	Units	IC33-030				IC33-050		IC33-075				
Peak force	Fp	Ν		1125			1875			2815			
		lbf		253			422			633			
Continuous force @ Tmax	Fc	Ν		896			1492			2240			
see note ①		lbf		202			335			504			
Motor constant @ 25°C	Km	N/√W		34.5			49.2			64.2			
Max. Cont. power dissipation	Pc	W		955			1296			1721			
Electrical Specifications													
		Winding Code	A1	A3	A5	A1	A3	A5	A1	A3	A5		
Peak current	lp	Arms	13.8	41.4	23.9	13.8	41.4	23.9	13.8	41.4	23.9		
Continuous Current @ Tmax	lc	Arms	9.8	29.5	17.0	9.8	29.4	17.0	9.8	29.4	17.0		
Electrical resistance													
@ 25°C±10%	Rm	Ohms L-L	4.7	0.52	1.6	6.4	0.71	2.1	8.5	0.94	2.8		
Electrical inductance ±20%	L	mH L-L	31.0	3.4	10.3	49.5	5.5	16.5	73.1	8.1	24.4		
Back EMF constant	Ke	Vpeak/m/s L-L	74.5	24.8	43.0	124	41.4	71.7	187	62.2	108		
@ 25°C±10%		Vpeak/in/sec L-L	1.89	0.63	1.09	3.16	1.05	1.82	4.74	1.58	2.74		
Force constant @ 25°C±10%	Kf	N/Arms	91.3	30.4	52.7	152	50.7	87.9	229	76.2	132		
		lbf / Arms	20.5	6.8	11.9	34.2	11.4	19.8	51.4	17.1	29.7		
Mechanical Specifications													
Coil Assembly Mass ±15%	Mc	kg		7.3			10.4			14.4			
		lbs		16.1			22.9			31.7			
Magnetic Way Type				MC030			MC050			MC075			
Magnetic Way Mass ±15%	Mw	kg/m		5.4			7.5			10.1			
		lbs/in		0.30			0.42			0.56			
Figures of Merit & Additio	nal Data												
Electrical time constant	Te	ms		6.6			7.7			8.6			
Max.Theoretical Acceleration	Amax	g's		15.7			18.4			19.9			
Magnetic attraction	Fa	kN		4.4			7.4			11.0			
		lbf		991			1652			2480			
Thermal Resistance													
- coils to external structure	Rth	°C/Watt		0.11			0.081			0.061			
Max. Allowable Coil Temp.	Tmax	°C		130			130			130			

Notes:

0 The motor continuous rated force is measured with the motor coils achieving the motor maximum allowable temperature Tmax. At this operating point the number of watts being dissipated by the coil assembly is equal to the maximum continuous power dissipation Pc. The heat load can be limited to a value below Pc by limiting the continuous rated output force of the motor to a value equal to: $Fc = Km \times Square Root (Pw)$; where Pw = the acceptable heat load, in watts, and must be a value below Pc.The RMS current needed to produce this force is simply Fc divided by the force constant Kf.

 ② Alternate windings can be made available. Please consult the Danaher Motion Customer Assistance Center for design options.
 ③ Maximum Theoretical Acceleration is based on the motors peak force and the motor mass alone. Limitations due to such factors as the additional mass of the load, the bearing type and design, the shock rating of the feedback, the peak current available from the amplifier etc. must be considered to determine the achievable acceleration in each application.
 Please see our Application Sizing pages in the back of this publication for more details on sizing and thermal considerations.

Tel

: 540

DANAHER MOTION is a registered trademark of Danaher Corporation. Danaher Motion makes every attempt to ensure accuracy and reliability of the specifications in this publication. Specifications are subject to change without notice. Danaher Motion provides this information "AS IS" and disclaims all warranties, express or implied, including, but not limited to, implied warranties of merchantability and fitness for a particular purpose. It is the responsibility of the product user to determine the suitability of this product for a specific application. @2004 Danaher Motion.

633 • 3400

Web site

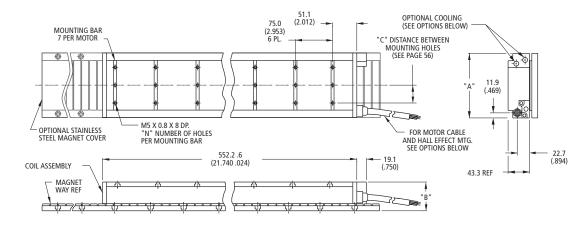
Rated Performance	Symbol	Units	IC33-100		IC33-150				IC33-20	0	IC33-250				
Peak force	Fp	N		3750			5625			7500			9375		
		lbf		843			1265			1686			2108		
Continuous force @ Tmax	Fc	N		3014			4464			5990			7216		
see note 1		lbf		677			1004			1347			1622		
Motor constant @ 25°C	Km	N/√W		76.5			96.9			114					
Max. Cont. power dissipation	Pc	W		2188			3000			3889			4773		
Electrical Specifications															
		Winding Code	A1	A3	A5	A1	A3	A5	A1	A3	A5	A1	A3	A5	
Peak current	lp	Arms	13.8	41.4	23.9	13.8	41.4	23.9	13.8	41.4	23.9	13.8	41.4	23.9	
Continuous Current @ Tmax	lc	Arms	9.9	29.7	17.1	9.8	29.3	16.9	9.8	29.5	17.0	9.9	29.6	17.1	
Electrical resistance															
@ 25°C±10%	Rm	Ohms L-L	10.6	1.2	3.5	14.9	1.7	5.0	19.1	2.1	6.4	23.2	2.6	7.7	
Electrical inductance ±20%	L	mH L-L	96.2	10.7	32.1	143	15.9	47.7	190	21.1	63.3	237	26.3	78.8	
Back EMF constant	Ke	Vpeak/m/s L-L	249	82.9	144	373	124	215	497	166	287	596	199	344	
@ 25°C±10%		Vpeak/in/sec L-L	6.32	2.11	3.65	9.47	3.16	5.47	12.6	4.21	7.30	15.1	5.05	8.74	
Force constant @ 25°C±10%	Kf	N/Arms	304	102	176	457	152	264	609	203	352	730	243	422	
		lbf/Arms	68.5	22.8	39.5	103	34.2	59.3	137	45.7	79.1	164	54.7	94.8	
Mechanical Specifications															
Coil Assembly Mass ±15%	Mc	kg		18.9			27.3			35.7			44.1		
		lbs		41.7			60.2			78.7			97.2		
Magnetic Way Type				MC100			MC150)		MC200)		MC250		
Magnetic Way Mass ±15%	Mw	kg/m		12.7			20.7			26.8			33.2		
		lbs/in		0.71			1.16			1.50			1.86		
Figures of Merit & Additio	nal Data														
Electrical time constant	Те	ms		9.1			9.6			9.9			10.2		
Max.Theoretical Acceleration	Amax	g's		20.2			21.0			21.4			21.7		
Magnetic attraction	Fa	kN	14.7				22.1			29.4			36.8		
		lbf		3305			4957			6609		8262			
Thermal Resistance															
- coils to external structure	Rth	°C/Watt		0.048		0.035			0.027			0.022			
Max. Allowable Coil Temp.	Tmax	°C		130		130			130			130			

Notes:

 \oplus The motor continuous rated force is measured with the motor coils achieving the motor maximum allowable temperature Tmax. At this operating point the number of watts being dissipated by the coil assembly is equal to the maximum continuous power dissipation Pc. The heat load can be limited to a value below Pc by limiting the continuous rated output force of the motor to a value equal to: Fc = Km x Square Root (Pw); where Pw = the acceptable heat load, in watts, and must be a value below Pc.

633 • 3400

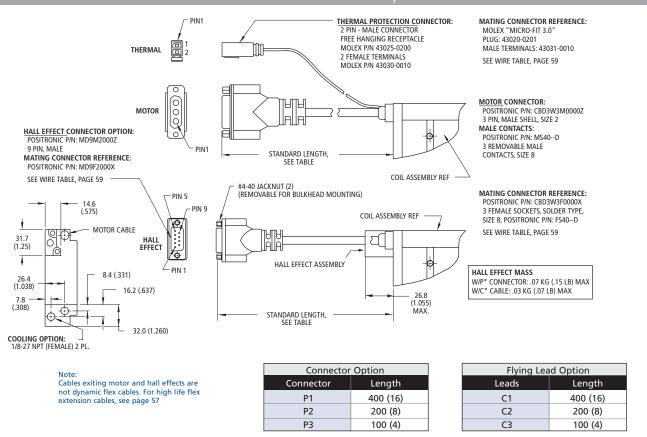
The RMS current needed to produce this force is simply Fc divided by the force constant Kf. ② Alternate windings can be made available. Please consult the Danaher Motion Customer Assistance Center for design options. ③ Maximum Theoretical Acceleration is based on the motors peak force and the motor mass alone. Limitations due to such factors as the additional mass of the load, the bearing type and design, the shock rating of the feedback, the peak current available from the amplifier etc. must be considered to determine the achievable acceleration in each application.


I Please see our Application Sizing pages in the back of this publication for more details on sizing and thermal considerations.

DANAHER MOTION is a registered trademark of Danaher Corporation. Danaher Motion makes every attempt to ensure accuracy and reliability of the specifications in this publication. Specifications are subject to change without notice. Danaher Motion provides this information "AS IS" and disclaims all warranties, express or implied, including, but not limited to, implied warranties of merchantability and fitness for a particular purpose. It is the responsibility of the product user to determine the suitability of this product for a specific application. @2004 Danaher Motion.

Tel

Cooled IC33-xxx



Resultant airgap = 0.9mm (.036) nominal (0.5mm (.020") minimum) when components are set up to dimension "B" in table below. (Please refer to installation manual for more detail)

I	Notes:
(D Dimensions in mm (inches)
0	D Tolerances unless otherwise specified
	no decimal place ± 0.8 (.03)
	X decimal place ± 0.1 (.004)
	XX decimal place ± 0.05 (.002)

Motor Coil	Coil Width		Dim "B"	Dim "B"	# Holes
Туре	"A"	Cooled	without cover	w/ Magnet cover	"N"
IC33-030	65.0 (2.559) ± 1.0 (.04)	ICXX-030	58.3±0.1 (2.295±.004)	58.6±0.1 (2.307±.004)	2
IC33-050	85.0 (3.346) ±.1.0 (.04)	ICXX-050	58.3±0.1 (2.295±.004)	58.6±0.1 (2.307±.004)	2
IC33-075	110.0 (4.331) ± 1.0 (.04)	ICXX-075	58.3±0.1 (2.295±.004)	58.6±0.1 (2.307±.004)	3
IC33-100	135.0 (5.315) ± 1.0 (.04)	ICXX-100	58.3±0.1 (2.295±.004)	58.6±0.1 (2.307±.004)	3
IC33-150	185.0 (7.283) ± 1.5 (.06)	ICXX-150	60.3±0.1 (2.374±.004)	60.6±0.1 (2.386±.004)	5
IC33-200	235.0 (9.252) ± 1.5 (.06)	ICXX-200	60.3±0.1 (2.374±.004)	60.6±0.1 (2.386±.004)	6
IC33-250	285.0 (11.220) ± 1.5 (.06)	ICXX-250	60.3±0.1 (2.374±.004)	60.6±0.1 (2.386±.004)	7

Termination and Effects Options

DANAHER MOTION is a registered trademark of Danaher Corporation. Danaher Motion makes every attempt to ensure accuracy and reliability of the specifications in this publication. Specifications are subject to change without notice. Danaher Motion provides this information "AS IS" and disclaims all warranties, express or implied, including, but not limited to, implied warranties of merchantability and fitness for a particular purpose. It is the responsibility of the product user to determine the suitability of this product for a specific application. @2004 Danaher Motion.

Rated Performance	Symbol	Units	IC44-030		I	C44-05	0	I	C44-075	5	IC44-100					
Peak force	Fp	Ν		1500			2500			3750			5000			
		lbf		337			562			843			1124			
Continuous force @ Tmax	Fc	Ν		1201			1990			2980			4015			
see note ①		lbf		270			446			669		902				
Motor constant @ 25°C	Km	N/\sqrt{W}		39.9			56.8			74.0						
Max. Cont. power dissipation	Pc	W		1280			1721			2283			2917			
Electrical Specifications																
		Winding Code	A1	A2	A3	A1	A2	A3	A1	A2	A3	A1	A2	A3		
Peak current	lp	Arms	13.8	27.6	55.2	13.8	27.6	55.2	13.8	27.6	55.2	13.8	27.5	55.1		
Continuous Current @ Tmax	lc	Arms	9.9	19.7	39.5	9.8	19.6	39.1	9.8	19.5	39.1	9.9	19.8	39.5		
Electrical resistance																
@ 25°C±10%	Rm	Ohms L-L	6.2	1.6	0.39	8.5	2.1	0.53	11.3	2.8	0.71	14.1	3.5	0.88		
Electrical inductance ±20%	L	mH L-L	41.3	10.3	2.6	66.1	16.5	4.1	97.3	24.3	6.1	128	32.1	8.0		
Back EMF constant	Ke	Vpeak/m/s L-L	99.4	49.7	24.8	166	82.9	41.4	249	124	62.2	331	166	82.9		
@ 25°C±10%		Vpeak/in/sec L-L	2.52	1.26	0.63	4.21	2.11	1.05	6.32	3.16	1.58	8.42	4.21	2.11		
Force constant @25°C±10%	Kf	N/Arms	122	60.9	30.4	203	102	50.8	305	152	76.2	406	203	102		
		lbf/Arms	27.4	13.7	6.8	45.6	22.8	11.4	68.5	34.2	17.1	91.3	45.6	22.8		
Mechanical Specifications																
Coil Assembly Mass ±15%	Mc	kg		9.6			13.9			19.2			25.0			
		lbs		21.2			30.6			42.3			55.1			
Magnetic Way Type				MC030			MC050			MC075			MC100			
Magnetic Way Mass ±15%	Mw	kg/m		5.4			7.5			10.1			12.7			
		lbs/in		0.30			0.42			0.56			0.71			
Figures of Merit & Additio	nal Data											1				
Electrical time constant	Те	ms		6.7		7.8		7.8		7.8		8.6			9.1	
Max.Theoretical Acceleration	Amax	g's		15.9			18.3			19.9			20.4			
Magnetic attraction	Fa	kN		5.9			9.8			14.7		19.6				
		lbf		1322			2203			3305		4406				
Thermal Resistance																
- coils to external structure	Rth	°C/Watt		0.082			0.061			0.046			0.036			
Max. Allowable Coil Temp.	Tmax	°C		130		130			130			130				

Notes:

The motor continuous rated force is measured with the motor coils achieving the motor maximum allowable temperature Tmax. At this operating point the number of watts being dissipated by the coil assembly is equal to the maximum continuous power dissipation Pc. The heat load can be limited to a value below Pc by limiting the continuous rated output force of the motor to a value equal to: Fc = Km x Square Root (Pw); where Pw = the acceptable heat load, in watts, and must be a value below Pc The RMS current needed to produce this force is simply Fc divided by the force constant Kf.

633 • 3400

② Alternate windings can be made available. Please consult the Danaher Motion Customer Assistance Center for design options. ③ Maximum Theoretical Acceleration is based on the motors peak force and the motor mass alone. Limitations due to such factors as the additional mass of the load, the bearing type and design, the shock rating of the feedback, the peak current available from the amplifier etc. must be considered to determine the achievable acceleration in each application.

④ Please see our Application Sizing pages in the back of this publication for more details on sizing and thermal considerations.

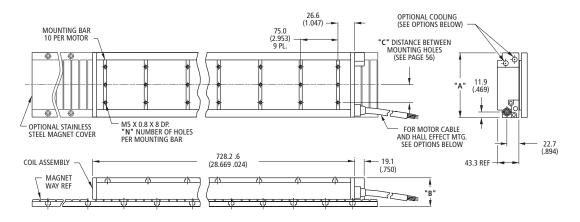
DANAHER MOTION is a registered trademark of Danaher Corporation. Danaher Motion makes every attempt to ensure accuracy and reliability of the specifications in this publication. Specifications are subject to change without notice. Danaher Motion provides this information "AS IS" and disclaims all warranties, express or implied, including, but not limited to, implied warranties of merchantability and fitness for a particular purpose. It is the responsibility of the product user to determine the suitability of this product for a specific application. @2004 Danaher Motion.

Tel

Rated Performance	Symbol	Units		IC44-150			IC44-200)	IC44	250
Peak force	Fp	N		7500			10000		125	00
		lbf		1686			2248		2810	
Continuous force @ Tmax	Fc	Ν		5990		8035		9620		
see note ①		lbf		1343			1806		210	55
Motor constant @ 25°C	Km	N/√W		112			132		14	3
Max. Cont. power dissipation	Pc	W		4038			5250		630	54
Electrical Specifications										
		Winding Code	A1	A2	A3	A1	A2	A3	A2	A3
Peak current	lp	Arms	13.8	27.6	55.3	13.8	27.6	55.2	27.6	55.0
Continuous Current @ Tmax	lc	Arms	9.8	19.6	39.2	9.9	19.8	39.6	19.8	39.5
Electrical resistance										
@ 25°C±10%	Rm	Ohms L-L	19.8	5.0	1.2	25.5	6.4	1.6	7.7	1.9
Electrical inductance ±20%	L	mH L-L	191	47.7	11.9	253	63.3	15.8	78.9	19.7
Back EMF constant	Ke	Vpeak/m/s L-L	497	249	124	663	332	166	397	199
@ 25°C±10%		Vpeak/in/sec L-L	12.6	6.32	3.16	16.8	8.42	4.21	10.1	5.05
Force constant @ 25°C±10%	Kf	N/Arms	609	305	152	812	406	203	487	243
		lbf / Arms	137	68.5	34.2	183	91.3	45.7	109	54.7
Mechanical Specifications										
Coil Assembly Mass ±15%	Mc	kg		36.2			47.4		58.5	
		lbs		79.8			104		129	
Magnetic Way Type				MC150			MC200		MC	250
Magnetic Way Mass ±15%	Mw	kg/m		20.7			26.8		33	.2
		lbs/in		1.16			1.50		1.8	36
Figures of Merit & Additio	nal Data									
Electrical time constant	Те	ms		9.6			9.9		10	.2
Max.Theoretical Acceleration	Amax	g's		21.1			21.5		21	.8
Magnetic attraction	Fa	kN	29.4			39.4		49	.2	
		lbf	6609			8855		110	061	
Thermal Resistance										
- coils to external structure	Rth	°C/Watt		0.026			0.020		0.0	17
Max. Allowable Coil Temp.	Tmax	°C		130			130		13	0

Notes: ① The motor continuous rated force is measured with the motor coils achieving the motor maximum allowable temperature Tmax. At this operating point the number of watts being dissipated by the coil assembly is equal to the maximum continuous power dissipation Pc. The heat load can be limited to a value below Pc by limiting the continuous rated output force of the motor to a value equal to: Fc = Km x Square Root (Pw); where Pw = the acceptable heat load, in watts, and must be a value below Pc. The RMS current needed to produce this force is simply Fc divided by the force constant Kf.

 ② Alternate windings can be made available. Please consult the Danaher Motion Customer Assistance Center for design options.
 ③ Maximum Theoretical Acceleration is based on the motors peak force and the motor mass alone. Limitations due to such factors as the additional mass of the load, the bearing type and design, the shock rating of the feedback, the peak current available from the amplifier etc. must be considered to determine the achievable acceleration in each application. ④ Please see our Application Sizing pages in the back of this publication for more details on sizing and thermal considerations.

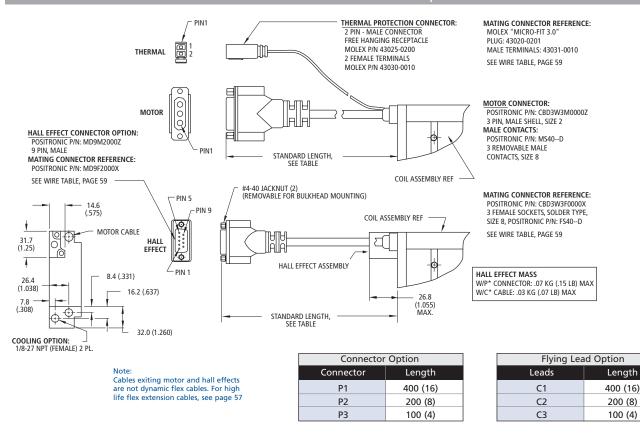

DANAHER MOTION is a registered trademark of Danaher Corporation. Danaher Motion makes every attempt to ensure accuracy and reliability of the specifications in this publication. Specifications are subject to change without notice. Danaher Motion provides this information "AS IS" and disclaims all warranties, express or implied, including, but not limited to, implied warranties of merchantability and fitness for a particular purpose. It is the responsibility of the product user to determine the suitability of this product for a specific application. @2004 Danaher Motion.

633 • 3400

: 540

Tel

Cooled IC44-xxx



Resultant airgap = 0.9mm (.036) nominal (0.5mm (.020") minimum) when components are set up to dimension "B" in table below. (Please refer to installation manual for more detail)

Notes: 1) Dimensions in mm (inches) ② Tolerances unless otherwise specified: no decimal place \pm 0.8 (.03) X decimal place \pm 0.1 (.004) XX decimal place ± 0.05 (.002)

Motor Coil	Coil Width		Dim "B"	Dim "B"	# Holes
Туре	"A"	Cooled	without cover	w/ Magnet cover	"N"
IC44-030	65.0 (2.559) ± 1.0 (.04)	ICXX-030	58.3±0.1 (2.295±.004)	58.6±0.1 (2.307±.004)	2
IC44-050	85.0 (3.346) ±.1.0 (.04)	ICXX-050	58.3±0.1 (2.295±.004)	58.6±0.1 (2.307±.004)	2
IC44-075	110.0 (4.331) ± 1.0 (.04)	ICXX-075	58.3±0.1 (2.295±.004)	58.6±0.1 (2.307±.004)	3
IC44-100	135.0 (5.315) ± 1.0 (.04)	ICXX-100	58.3±0.1 (2.295±.004)	58.6±0.1 (2.307±.004)	3
IC44-150	185.0 (7.283) ± 1.5 (.06)	ICXX-150	60.3±0.1 (2.374±.004)	60.6±0.1 (2.386±.004)	5
IC44-200	235.0 (9.252) ± 1.5 (.06)	ICXX-200	60.3±0.1 (2.374±.004)	60.6±0.1 (2.386±.004)	6
IC44-250	285.0 (11.220) ± 1.5 (.06)	ICXX-250	60.3±0.1 (2.374±.004)	60.6±0.1 (2.386±.004)	7

Termination and Hall Effect Options

DANAHER MOTION is a registered trademark of Danaher Corporation. Danaher Motion makes every attempt to ensure accuracy and reliability of the specifications in this publication. Specifications are subject to change without notice. Danaher Motion provides this information "AS IS" and disclaims all warranties, express or implied, including, but not limited to, implied warranties of merchantability and fitness for a particular purpose. It is the responsibility of the product user to determine the suitability of this product for a specific application. @2004 Danaher Motion.

Tel

: 540

633 • 3400

Rated Performance	Symbol	Units	IC55-030		1	IC55-050			IC55-07	'5	IC55-100			
Peak force	Fp	N		1875			3125			4690			6250	
		lbf		422			703			1054		1405		
Continuous force @ Tmax	Fc	Ν		1497			2511		3773			5001		
see note 1		lbf		336			564			848			1124	
Motor constant @ 25°C	Km	N/ \///		44.6			63.8			83.1			98.8	
Max. Cont. power dissipation	Pc	W		1591			2188			2917			3621	
Electrical Specifications														
		Winding Code	A1	A3	A5	A1	A3	A5	A1	A3	A5	A1	A3	A5
Peak current	lp	Arms	13.8	69.1	23.9	13.9	69.5	24.1	13.9	69.6	24.1	13.8	69.2	24.0
Continuous Current @ Tmax	lc	Arms	9.8	49.2	17.0	9.9	49.5	17.1	9.9	49.5	17.2	9.9	49.3	17.1
Electrical resistance														
@ 25°C±10%	Rm	Ohms L-L	7.8	0.31	2.6	10.6	0.42	3.5	14.1	0.56	4.7	17.7	0.71	5.9
Electrical inductance ±20%	L	mH L-L	51.5	2.1	17.2	82.5	3.3	27.5	122	4.9	40.5	161	6.4	53.5
Back EMF constant	Ke	Vpeak/m/s L-L	124	24.8	71.7	207	41.4	120	311	62.2	180	414	82.9	239
@ 25°C±10%		Vpeak/in/sec L-L	3.15	0.63	1.82	5.26	1.05	3.04	7.90	1.58	4.56	10.5	2.11	6.08
Force constant @ 25°C±10%	Kf	N/Arms	152	30.4	87.8	254	50.7	146	381	76.2	220	508	102	293
		lbf/Arms	34.2	6.8	19.7	57.0	11.4	32.9	85.6	17.1	49.4	114	22.8	65.9
Mechanical Specifications														
Coil Assembly Mass ±15%	Mc	kg		12.0			17.3		23.9		31.2			
		lbs		26.5			38.1		52.7			68.8		
Magnetic Way Type				MC030			MC050		MC075			MC100		
Magnetic Way Mass ±15%	Mw	kg/m		5.4			7.5			10.1			12.7	
		lbs/in		0.30			0.42			0.56			0.71	
Figures of Merit & Additio	nal Data													
Electrical time constant	Te	ms		6.6			7.8			8.6			9.1	
Max.Theoretical Acceleration	Amax	g's		15.9			18.4			20.0			20.4	
Magnetic attraction	Fa	kN	7.4			12.3		18.4				24.5		
		lbf			2754			4132			5508			
Thermal Resistance														
- coils to external structure	Rth	°C/Watt		0.066			0.048		0.036		0.029			
Max. Allowable Coil Temp.	Tmax	°C		130			130			130			130	

Notes:

0 The motor continuous rated force is measured with the motor coils achieving the motor maximum allowable temperature Tmax. At this operating point the number of watts being dissipated by the coil assembly is equal to the maximum continuous power dissipation Pc. The heat load can be limited to a value below Pc by limiting the continuous rated output force of the motor to a value equal to: $Fc = Km \times Square Root (Pw)$; where Pw = the acceptable heat load, in watts, and must be a value below Pc.The RMS current needed to produce this force is simply Fc divided by the force constant Kf.

 Alternate windings can be made available. Please consult the Danaher Motion Customer Assistance Center for design options.
 Maximum Theoretical Acceleration is based on the motors peak force and the motor mass alone. Limitations due to such factors as the additional mass of the load, the bearing type and design, the shock rating of the feedback, the peak current available from the amplifier etc. must be considered to determine the achievable acceleration in each application.

④ Please see our Application Sizing pages in the back of this publication for more details on sizing and thermal considerations.

DANAHER MOTION is a registered trademark of Danaher Corporation. Danaher Motion makes every attempt to ensure accuracy and reliability of the specifications in this publication. Specifications are subject to change without notice. Danaher Motion provides this information "AS IS" and disclaims all warranties, express or implied, including, but not limited to, implied warranties of merchantability and fitness for a particular purpose. It is the responsibility of the product user to determine the suitability of this product for a specific application. @2004 Danaher Motion.

633 • 3400

: 540

Tel

Rated Performance	Symbol	Units	IC5	5-150	IC55	-200	IC55	5-250	
Peak force	Fp	Ν	g	9375	125	500	15	625	
		lbf	2	2108	28	10	35	513	
Continuous force @ Tmax	Fc	Ν	7446		10033		12023		
see note 1		lbf	1	1674	22	56	27	703	
Motor constant @ 25°C	Km	N/√W		125	14	7	1	60	
Max. Cont. power dissipation	Pc	W	5	5000	65	63	79	955	
Electrical Specifications	ctrical Specifications								
		Winding Code	A3	A5	A3	A5	A3	A5	
Peak current	lp	Arms	68.7	23.8	69.4	24.0	69.4	24.0	
Continuous Current @ Tmax	lc	Arms	48.9	16.9	49.4	17.1	49.4	17.1	
Electrical resistance									
@ 25°C±10%	Rm	Ohms L-L	1.0	8.3	1.3	10.6	1.5	12.9	
Electrical inductance ±20%	L	mH L-L	9.5	79.5	12.7	106	15.8	131	
Back EMF constant	Ke	Vpeak/m/s L-L	124	359	166	479	199	574	
@ 25°C±10%		Vpeak/in/sec L-L	3.16	9.11	4.21	12.2	5.05	14.6	
Force constant @ 25°C±10%	Kf	N/Arms	152	439	203	586	243	703	
		lbf / Arms	34.2	98.8	45.7	132	54.7	158	
Mechanical Specifications									
Coil Assembly Mass ±15%	Mc	kg	4	45.1	5	59		73	
		lbs	<u> </u>	99.4	1:	30	161		
Magnetic Way Type			M	C150	мс	200	MC250		
Magnetic Way Mass ±15%	Mw	kg/m	2	20.7	26	5.8	33	3.2	
		lbs/in	1	1.16	1.	50	1.	86	
Figures of Merit & Additio	nal Data								
Electrical time constant	Te	ms		9.6	9	.9	1().2	
Max.Theoretical Acceleration	Amax	g's	2	21.2	21	.6	2	1.8	
Magnetic attraction	Fa	kN	36.8		49	9.3	6	1.5	
		lbf	8262		110)72	13	826	
Thermal Resistance									
- coils to external structure	Rth	°C/Watt	0	.021	0.0)16	0.0	013	
Max. Allowable Coil Temp.	Tmax	°C		130	1:	30	1	30	

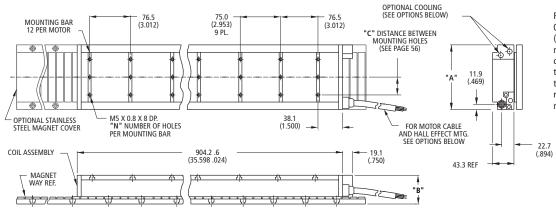
Notes: 0 The motor continuous rated force is measured with the motor coils achieving the motor maximum allowable temperature Tmax. At this operating point the number of watts being dissipated by the coil assembly is equal to the maximum continuous power dissipation Pc. The heat load can be limited to a value below Pc by limiting the continuous rated output force of the motor to a value equal to: Fc = Km x Square Root (Pw); where Pw = the acceptable heat load, in watts, and must be a value below Pc. The RMS current needed to produce this force is simply Fc divided by the force constant Kf.

Alternate windings can be made available. Please consult the Danaher Motion Customer Assistance Center for design options. Maximum Theoretical Acceleration is based on the motors peak force and the motor mass alone. Limitations due to such factors as the (2)

3 additional mass of the load, the bearing type and design, the shock rating of the feedback, the peak current available from the amplifier

etc. must be considered to determine the achievable acceleration in each application. ④ Please see our Application Sizing pages in the back of this publication for more details on sizing and thermal considerations.

DANAHER MOTION is a registered trademark of Danaher Corporation. Danaher Motion makes every attempt to ensure accuracy and reliability of the specifications in this publication. Specifications are subject to change without notice. Danaher Motion provides this information "AS IS" and disclaims all warranties, express or implied, including, but not limited to, implied warranties of merchantability and fitness for a particular purpose. It is the responsibility of the product user to determine the suitability of this product for a specific application. @2004 Danaher Motion.



Tel

: 540

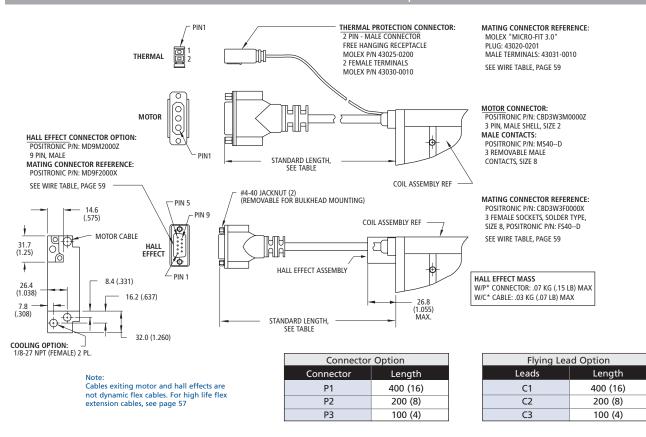
633 • 3400

Cooled IC55-xxx

Мо

IC

IC

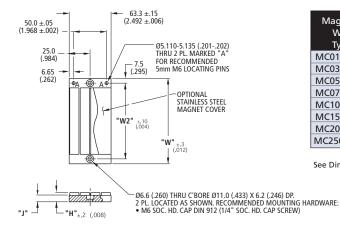

IC

 Resultant airgap = 0.9mm (.036) nominal (0.5mm (.020") minimum) when components are set up to dimension "B" in table below. (Please refer to installation manual for more detail)

Notes: • Dimensions in mm (inches) • Tolerances unless otherwise specified: no decimal place ± 0.8 (.03) X decimal place ± 0.1 (.004) XX decimal place ± 0.05 (.002)

otor Coil	Coil Width		Dim "B"	Dim "B"	# Holes
Туре	"A"	Cooled	without cover	w/ Magnet cover	"N"
55-030	65.0 (2.559) ± 1.0 (.04)	ICXX-030	58.3±0.1 (2.295±.004)	58.6±0.1 (2.307±.004)	2
55-050	85.0 (3.346) ±.1.0 (.04)	ICXX-050	58.3±0.1 (2.295±.004)	58.6±0.1 (2.307±.004)	2
55-075	110.0 (4.331) ± 1.0 (.04)	ICXX-075	58.3±0.1 (2.295±.004)	58.6±0.1 (2.307±.004)	3
55-100	135.0 (5.315) ± 1.0 (.04)	ICXX-100	58.3±0.1 (2.295±.004)	58.6±0.1 (2.307±.004)	3
55-150	185.0 (7.283) ± 1.5 (.06)	ICXX-150	60.3±0.1 (2.374±.004)	60.6±0.1 (2.386±.004)	5
55-200	235.0 (9.252) ± 1.5 (.06)	ICXX-200	60.3±0.1 (2.374±.004)	60.6±0.1 (2.386±.004)	6
55-250	285.0 (11.220) ± 1.5 (.06)	ICXX-250	60.3±0.1 (2.374±.004)	60.6±0.1 (2.386±.004)	7

Termination and Hall Effect Options

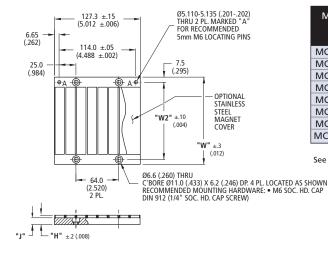


DANAHER MOTION is a registered trademark of Danaher Corporation. Danaher Motion makes every attempt to ensure accuracy and reliability of the specifications in this publication. Specifications are subject to change without notice. Danaher Motion provides this information "AS IS" and disclaims all warranties, express or implied, including, but not limited to, implied warranties of merchantability and fitness for a particular purpose. It is the responsibility of the product user to determine the suitability of this product for a specific application. @2004 Danaher Motion.

53

Magnet assemblies are modular and can be installed in multiples of same or alternate lengths. Standard lengths are shown below.

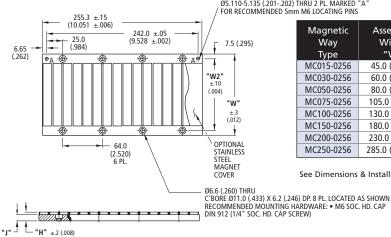
MCxxx-0064



Magnetic	Assembly	Mounting		"H"	"H"
Way Type	Width "W"	Hole Width "W2"	" "	With Cover	Without Cover
MC015-0064	45.0 (1.772)	30.0 (1.181)	6.0 (.236)	10.4 (.409)	10.1 (.397)
MC030-0064	60.0 (2.362)	45.0 (1.772)	10.0 (.394)	14.4 (.566)	14.1 (.555)
MC050-0064	80.0 (3.150)	65.0 (2.560)	10.0 (.394)	14.4 (.566)	14.1 (.555)
MC075-0064	105.0 (4.134)	90.0 (3.544)	10.0 (.394)	14.4 (.566)	14.1 (.555)
MC100-0064	130.0 (5.118)	115.0 (4.528)	10.0 (.394)	14.4 (.566)	14.1 (.555)
MC150-0064	180.0 (7.087)	165.0 (6.496)	12.0 (.472)	16.4 (.645)	16.1 (.634)
MC200-0064	230.0 (9.055)	215.0 (8.464)	12.0 (.472)	16.4 (.645)	16.1 (.634)
MC250-0064	285.0 (11.220)	270.0 (10.630)	12.0 (.472)	16.4 (.645)	16.1 (.634)

Kollmorgen

See Dimensions & Installation page for MC250-xx mounting hole details.


MCxxx-0128

Magnetic Way Type	Assembly Width "W"	Mounting Hole Width "W2"	"」"	"H" With Cover	"H" Without Cover
MC015-0128	45.0 (1.772)	30.0 (1.181)	6.0 (.236)	10.4 (.409)	10.1 (.397)
MC030-0128	60.0 (2.362)	45.0 (1.772)	10.0 (.394)	14.4 (.566)	14.1 (.555)
MC050-0128	80.0 (3.150)	65.0 (2.560)	10.0 (.394)	14.4 (.566)	14.1 (.555)
MC075-0128	105.0 (4.134)	90.0 (3.544)	10.0 (.394)	14.4 (.566)	14.1 (.555)
MC100-0128	130.0 (5.118)	115.0 (4.528)	10.0 (.394)	14.4 (.566)	14.1 (.555)
MC150-0128	180.0 (7.087)	165.0 (6.496)	12.0 (.472)	16.4 (.645)	16.1 (.634)
MC200-0128	230.0 (9.055)	215.0 (8.464)	12.0 (.472)	16.4 (.645)	16.1 (.634)
MC250-0128	285.0 (11.220)	270.0 (10.630)	12.0 (.472)	16.4 (.645)	16.1 (.634)

See Dimensions & Installation page for MC250-xx mounting hole details.

MCxxx-0256

Ø5.110-5.135 (.201-.202) THRU 2 PL. MARKED "A" FOR RECOMMENDED 5mm M6 LOCATING PINS

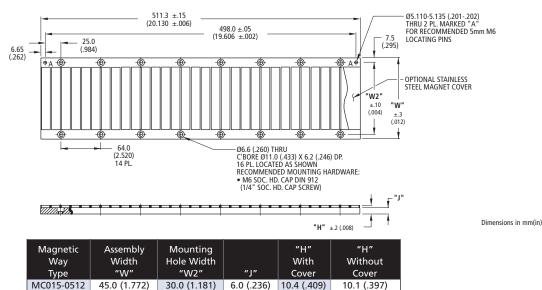
Magnetic Way Type	Assembly Width "W"	Mounting Hole Width "W2"	"ر	"H" With Cover	"H" Without Cover
MC015-0256	45.0 (1.772)	30.0 (1.181)	6.0 (.236)	10.4 (.409)	10.1 (.397)
MC030-0256	60.0 (2.362)	45.0 (1.772)	10.0 (.394)	14.4 (.566)	14.1 (.555)
MC050-0256	80.0 (3.150)	65.0 (2.560)	10.0 (.394)	14.4 (.566)	14.1 (.555)
MC075-0256	105.0 (4.134)	90.0 (3.544)	10.0 (.394)	14.4 (.566)	14.1 (.555)
MC100-0256	130.0 (5.118)	115.0 (4.528)	10.0 (.394)	14.4 (.566)	14.1 (.555)
MC150-0256	180.0 (7.087)	165.0 (6.496)	12.0 (.472)	16.4 (.645)	16.1 (.634)
MC200-0256	230.0 (9.055)	215.0 (8.464)	12.0 (.472)	16.4 (.645)	16.1 (.634)
MC250-0256	285.0 (11.220)	270.0 (10.630)	12.0 (.472)	16.4 (.645)	16.1 (.634)

See Dimensions & Installation page for MC250-xx mounting hole details.

Dimensions in mm(in)

DANAHER MOTION is a registered trademark of Danaher Corporation. Danaher Motion makes every attempt to ensure accuracy and reliability of the specifications in this publication. Specifications are subject to change without notice. Danaher Motion provides this information "AS IS" and disclaims all warranties, express or implied, including, but not limited to, implied warranties of merchantability and fitness for a particular purpose. It is the responsibility of the product user to determine the suitability of this product for a specific application. @2004 Danaher Motion.

www.DanaherMotion.com


Tel

: 540

633 • 3400

Web site

MCxxx-0512

10.0 (.394) 14.4 (.566)

10.0 (.394) 14.4 (.566)

10.0 (.394) 14.4 (.566)

10.0 (.394) 14.4 (.566)

12.0 (.472) 16.4 (.645)

12.0 (.472) 16.4 (.645)

12.0 (.472) 16.4 (.645)

14.1 (.555)

14.1 (.555)

14.1 (.555)

14.1 (.555)

16.1 (.634)

16.1 (.634)

16.1 (.634)

See Dimensions & Installation page for MC250-xx mounting hole details.

MCxxx-1024

MC030-0512

MC050-0512

MC075-0512

MC100-0512

MC150-0512

MC200-0512

MC250-0512

60.0 (2.362)

80.0 (3.150)

105.0 (4.134)

130.0 (5.118)

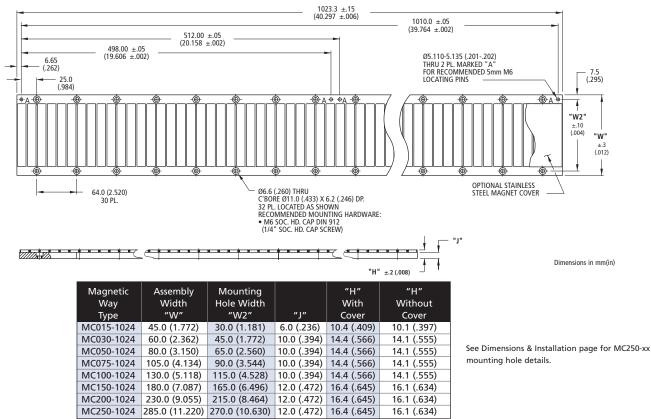
180.0 (7.087)

230.0 (9.055)

285.0 (11.220)

45.0 (1.772)

65.0 (2.560)


90.0 (3.544)

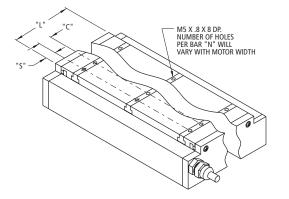
115.0 (4.528)

165.0 (6.496)

215.0 (8.464)

270.0 (10.630)

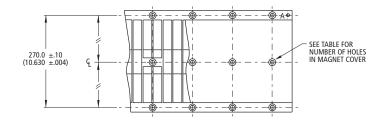
DANAHER MOTION is a registered trademark of Danaher Corporation. Danaher Motion makes every attempt to ensure accuracy and reliability of the specifications in this publication. Specifications are subject to change without notice. Danaher Motion provides this information "AS IS" and disclaims all warranties, express or implied, including, but not limited to, implied warranties of merchantability and fitness for a particular purpose. It is the responsibility of the product user to determine the suitability of this product for a specific application. @2004 Danaher Motion.


55

Typical Installation of Multiple Ironcore Magnet Assemblies

Magnet Way widths correspond to the mating coil assembly width. Magnet Way assemblies are modular and come in standard lengths: 64, 128, 256, 512, 1024 mm. Multiple magnet assemblies can be installed to obtain the desired length. Shown below is the method to mount multiple assemblies.

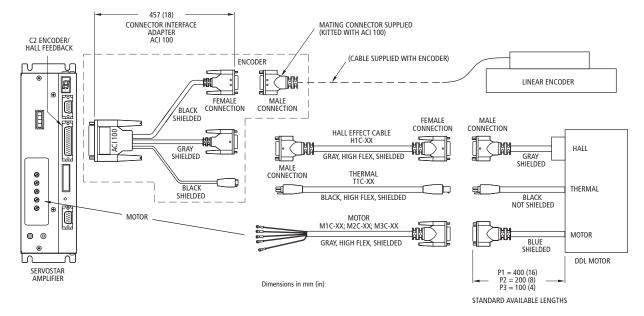
64.0 31.75 (1.250) — (2.520) — TYP BOLT MTG. 14.00 — (.551) PIN LOC. RECOMMENDED PIN Ø5 M6 6.75 (.266) PIN DATUM HOLES TO BE LOCATED ON SAME SIDE TO ENSURE CORRECT NORTH/SOUTH POLE ORIENTATION -@ -@ -@ ÷ ¢ Φ ÷ Φ, \oplus -@ \odot RESULTANT GAP BETWEEN MAGNET ASSEMBLIES FROM PROPER PIN LOCATION. DO NOT BUTT MAGNET 1ST MAGNET ASSEMBLY 2ND MAGNET 3RD MAGNET ASSEMBLY ASSEMBLY ASSEMBLIES.


Typical Mounting Bar Lengths & Mounting Holes Tabulation

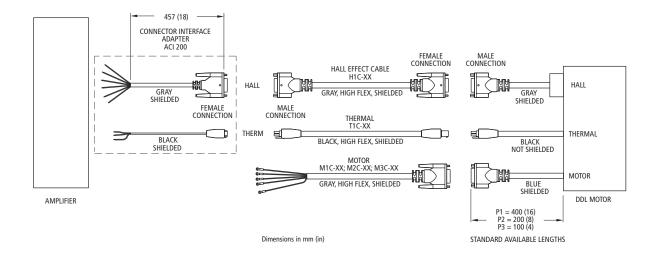
Motor Coil	Number of Holes	Spacing Between Holes	Mounting Bar Length	
Туре	"N"	"C"	"L"	"S"
ICXX-015	1	ON CENTER	15 (.59)	7.5 (.295)
ICXX-030	2	16.0 (0.630)	30 (1.18)	7.0 (.276)
ICXX-050	2	36.0 (1.417)	50 (1.97)	7.0 (.276)
ICXX-075	3	32.0 (1.260)	75 (2.95)	5.5 (.217)
ICXX-100	3	36.0 (1.417)	100 (3.94)	14.0 (.551)
ICXX-150	5	32.0 (1.260)	150 (5.91)	11.0 (.433)
ICXX-200	6	36.0 (1.417)	200 (7.87)	10.0 (.394)
ICXX-250	7	38.0 (1.496)	250 (9.84)	11.0 (.433)

Dimensions in mm(in)

250 Width Magnet Ways with 3 rows of Mounting Holes



Magnet	Number				
Way	of Holes				
MC250-0064	3				
MC250-0128	6				
MC250-0256	12				
MC250-0512	24				
MC250-1024	48				


DANAHER MOTION is a registered trademark of Danaher Corporation. Danaher Motion makes every attempt to ensure accuracy and reliability of the specifications in this publication. Specifications are subject to change without notice. Danaher Motion provides this information "AS IS" and disclaims all warranties, express or implied, including, but not limited to, implied warranties of merchantability and fitness for a particular purpose. It is the responsibility of the product user to determine the suitability of this product for a specific application. @2004 Danaher Motion.

Tel

High Flex Cables for use with SERVOSTAR®

High Flex Cables for Generic Applications

Note:

Cables are designed for minimum life cycle of millions of cycles under ideal conditions. Actual field application conditions may or may not produce the cable life described here in.

To ensure longest possible cable life under dynamic conditions, cables should be relaxed 24 hours before use by hanging freely at its mid-point. Cable is ready when very little memory is present. Cable should be installed in the 'plane of original flexure.' Cable should be installed with lowest possible mechanical tension. Avoid torsional bending. Minimum recommended dynamic bend radius is 15x largest cable diameter used in cable track; use a large bend radius whenever possible. Clearance between cables and track should be a minimum of 20% of the cable diameter. Use of a clamp or nylon cable tie that creates localized stress within the cable track must be avoided. Minimum distance from the clamping point to the start of the bend radius must be 25x the largest cable diameter used in the track. Cable track manufacturer should be consulted for application assistance.

Minimum recommended dynamic bend radius 15x cable diameter

Cable Assembly	AWG	Wire Diameter	Min. Dynamic Radius (15x wire Ø)		
M1C	18	11.0mm (.430in)	165mm (6.5in)		
M2C	14	12.6mm (.495in)	185mm (7.3in)		
M3C	12	14.2mm (.560in)	215mm (8.5in)		
T1C	22	6.0mm (.235in)	90mm (3.5in)		
H1C	26	6.0mm (.235in)	90mm (3.5in)		

DANAHER MOTION is a registered trademark of Danaher Corporation. Danaher Motion makes every attempt to ensure accuracy and reliability of the specifications in this publication. Specifications are subject to change without notice. Danaher Motion provides this information "AS IS" and disclaims all warranties, express or implied, including, but not limited to, implied warranties of merchantability and fitness for a particular purpose. It is the responsibility of the product user to determine the suitability of this product for a specific application. @2004 Danaher Motion.

Tel

540

Features

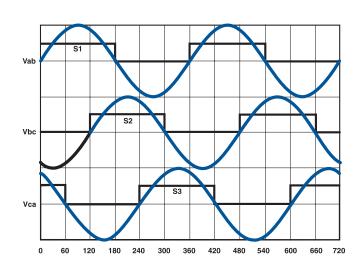
58

- High Flex cable designed for dynamic, continuous flexing applications
- Cable track compatible
- Molded, high reliability connectors
- Oil resistant PVC jacket
- 105°C / 600V motor cable, 105°C / 300V Hall Effect and Thermal Sensor cable
- CE compliant, fully shielded low impedance cable and connectors
- Fully tested, color coded, shipped with schematics
- Complete cable system for simple and reliable Plug-and-Play installation

Standard lengths of 1, 3, 6, 9, 12 and 15 meters available. For other lengths, consult a Danaher Motion representative.

M1C - 01 H1C - 01 High Flex Motor Cable Length in meters High Flex Length in meters 01 - 1 meter 03 - 3 meters 01 - 1 meter M - Motor Hall Effect Cable 3 meters6 meters 03 H1C - Hall Effect 6 meters9 meters 06 06 09 09 - 9 meters 12 - 12 meters 12 - 12 meters 15 - 15 meters 15 - 15 meters EXAMPLE: H1C - 06 High flex Hall Effect cable, terminated Wire Size with connectors at motor and 1C - 18 AWG for SE03, SE06 amplifiers amplifier ends. 2C - 14 AWG for SE10, SE20 amplifiers * 3C - 12 AWG for SE10, SE20 amplifiers * EXAMPLE: M1C - 06 High flex motor cable, terminated with connectors at motor and amplifier ends, 18 AWG, for SE03 and SE06. T1C - 01 ACI - 100 **High Flex Thermal Cable** Length in meters ACI Type - 1 meter 01 Connector interface 100 - SERVOSTAR T2C - Thermal (\$300, \$600) 03 - 3 meters and adapter 200 - Non-SERVOSTAR - 6 meters 06 - 9 meters 09 12 meters 15 meters 12 15 EXAMPLE: T1C - 06 High flex Thermal cable, terminated with connectors at motor and amplifier ends.

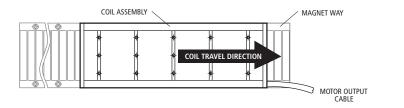
Model Numbering System

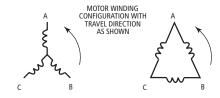

* For application assistance regarding cable selection for these and other higher current rated amplifiers, contact a Danaher Motion representative.

DANAHER MOTION is a registered trademark of Danaher Corporation. Danaher Motion makes every attempt to ensure accuracy and reliability of the specifications in this publication. Specifications are subject to change without notice. Danaher Motion provides this information "AS IS" and disclaims all warranties, express or implied, including, but not limited to, implied warranties of merchantability and fitness for a particular purpose. It is the responsibility of the product user to determine the suitability of this product for a specific application. @2004 Danaher Motion.

Motor Wire Table SEE TABLE BELOW FOR AWG DIA				Effect Wire Tak WG 6.0 DIA (.2		Thermal Protection Wire Table Thermistor 26 AWG 3.8 (.15")		
Pin Number	Color or Wire No.	Function	Pin Number	Color	Function	Pin	Color	Transition Point
1	Red	ØA	1	Gray	+5 Vdc	1	Black / White	120°C (IC/ICD)
2	White	ØB	2	Green	51	1		90°C (IL)
3	Black	ØC	3	Yellow	52	2	Black / White	120°C (IC/ICD)
Connector Shell	Grn/Yel	GND	4	Brown	\$3			90°C (IL)
Connector Shell	Violet	Shield	5	White	Return		see note 2	
			Shell	Shield	Shield			

note $$\odot$$ Ground and shield connection at shell: first make / last break




• Motor BEMF phases A,B,C relative to Hall effect devices \$1,\$2,\$3 with coil travel direction towards the motor output cable assembly exit as shown below.

note ©TIC-X extender cable is shielded

IL WIRE TABLE					
WINDING CODE	AWG	APPROX. CBL. DIA.			
ALL (A1,A2,A3,A4)	18	5.6mm (.22 IN)			
ICD WIRE TABLE					
WINDING CODE	AWG	APPROX. CBL. DIA.			
ALL (A1 - A8)	22	5.1mm (.20 IN)			
WINDING CODE	IC WIRE TABLE	NON-COOLED			
WINDING CODE	AWG	APPROX. CBL. DIA			
A1	18	5.6mm (.22 IN)			
A2	18	5.8mm (.22 IN)			
A3	14	8.9mm (.27 IN)			
A5	18	5.8mm (.22 IN)			
A6	14	6.9mm (.27 IN)			
A7	10	7.9mm (.31 IN)			

IC WIRE TABLE COOLED (AC)				
WINDING CODE	AWG	APPROX. CBL. DIA		
A1	18	5.6mm (.22 IN)		
A2	14	8.9mm (.27 IN)		
A3	10	7.9mm (.31 IN)		
A5	14	8.9mm (.27 IN)		
A6	12	7.9mm (.31 IN)		

Magnet pole pitch:

Both Ironcore (IC) and Ironless (IL) feature the same pole pitch, which is 32 mm (360 electrical degrees).

Tel

: 540

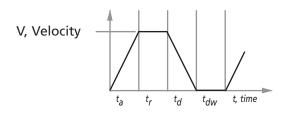
note ^① The diagrams above refer to both Ironless and Ironcore motors

DANAHER MOTION is a registered trademark of Danaher Corporation. Danaher Motion makes every attempt to ensure accuracy and reliability of the specifications in this publication. Specifications are subject to change without notice. Danaher Motion provides this information "AS IS" and disclaims all warranties, express or implied, including, but not limited to, implied warranties of merchantability and fitness for a particular purpose. It is the responsibility of the product user to determine the suitability of this product for a specific application. @2004 Danaher Motion.

633 • 3400

59

To size a Linear Motor, you will need to:


- 1. Define a Move Profile
- 2. Define the Load
- 3. Size the Motor and the Amplifier

From the move profile, we can calculate the maximum speed and the maximum acceleration/deceleration. From the load we can calculate all of the forces at constant speed and using the move profile all the dynamic forces during acceleration and deceleration. Once a motor is selected, the weight of the moving parts of the motor are added to the moving weight to calculate a total Peak Force and a total RMS force. The motor should be able to deliver the peak force and the calculated RMS force should be higher than the continuous force to ensure a known safety margin. The coil temperature rise can also be calculated to ensure that it is lower than the intended maximum temperature rise.

The maximum bus voltage and continuous and peak current can also be calculated and compared to the selected amplifier to be sure the calculated performances can be achieved.

1. Move Profile

Triangular/Trapezoidal

	Ur	nits
	SI	English
S _m - Move displacement	meters	inches
t _a - Acceleration Time	seconds	seconds
t _r - Time run at constant speed	seconds	seconds
t _d - Deceleration Time	seconds	seconds
t _{dw} - Dwell Time	seconds	seconds
V _m - Max Velocity	meter/sec.	inches/sec
A _m - Acceleration	meter/sec ²	inches/sec ²
D _m - Deceleration	meter/sec ²	inches/sec ²

633 • 34<u>00</u>

EXAMPLE: Move 0.1 meter in 100 msec assuming $t_a = t_d$ and $t_r = 0$, (assume triangular move)

Max Speed:
$$V_m = 2 \cdot S_m / (t_a + t_d + 2 \cdot t_r)$$

 $V_m = 2 \cdot 0.1 / (100E-3)$
 $= 2 \text{ meter/sec}$

Tel

540

Max Acceleration/Deceleration

Acceleration	A _m = Vm / ta
	A _m = 2 / 50E-3
	= 40 meter/sec ² $A_m "g" = A_m / 9.81$ a (g) = 40 / 9.81 = 4.08 g
Deceleration	$D_m = V_m/t_d$ $D_m = 2/50E-3$
	= 40 meter/sec ²
	D _m "g" = D _m /9.81
	d(g) = 40/9.81
	= 4.08 g

	Uni	ts
2. Load	SI	English
F _{ext} - External Force only	Ν	lbf
(Cutting force, etc.)		
F _{acc} - Acceleration Force only	Ν	lbf
F _r - Run Force at constant speed	Ν	lbf
F _{dec} - Deceleration Force only	Ν	lbf
F _{am} - Max. Acceleration Force	Ν	lbf
F _{dm} - Max. Deceleration Force	Ν	lbf
F _{dw} - Dwell Force	Ν	lbf
F _{rms} - RMS Force	Ν	lbf
μ - Coefficient of Friction (bearing support)	_	-
M _I - Load Mass	kg	lbs
M _c - Coil Mass	kg	lbs
M _{cb} - Counterbalance Mass	kg	lbs
F _a - Magnetic Attraction Force	Ν	lbf
CB - Counterbalance of load in % θ - Angle of Linear Displacement with horizontal	_	-
(0°= horizontal, 90° vertical)	degrees	degrees
g - Gravity coefficient	9.81 m/s ²	386 in/s ²
n - Number of motors in parallel	-	-

DANAHER MOTION is a registered trademark of Danaher Corporation. Danaher Motion makes every attempt to ensure accuracy and reliability of the specifications in this publication. Specifications are subject to change without notice. Danaher Motion provides this information "AS IS" and disclaims all warranties, express or implied, including, but not limited to, implied warranties of merchantability and fitness for a particular purpose. It is the responsibility of the product user to determine the suitability of this product for a specific application.

Web site :

www.DanaherMotion.com

BASIC FORMULAS*:

We assume a general case where we have n motors solidly coupled pushing the load and a possible counterbalance weight Mcb (Mostly for vertical displacement).

Example of Coefficient of Friction µ:

Linear bearing w/ balls	0.002 - 0.004
Linear bearing w/ rollers	0.005
Steel on oiled steel	0.06
Steel on dry steel	0.2
Steel on concrete	0.3

Counterbalance Weight:

 $M_{cb} = MI \bullet CB/100$

Acceleration Force only: $Facc = [(M_1 / n) \bullet (1 + CB/100) + M_c] \bullet Am$

Run Force at constant speed:

 $F_r = (M_l / n + M_c) \bullet g \bullet SIN(q) + m \bullet COS(q) - (Mcb/n) \bullet g +$ $F_a \bullet \mu + F_{ext}/n$

Deceleration Force only: $F_{dec} = [(M_{I} / n) \bullet (1 + CB/100) + M_{c}] \bullet D_{m}$

Maximum Acceleration Force: $F_{am} = F_{acc} + F_r$

Maximum Deceleration Force: $F_{dm} = F_{dec} - F_r$

Dwell Force: $F_{dw} = (M_1 / n + M_c) \bullet g \bullet [SIN(\theta)] - (M_{cb} / n) \bullet g$

RMS Force:

$$F_{rms} = \sqrt{\frac{F_{am}^2 \bullet t_a + F_r^2 \bullet t_r + F_{dm}^2 \bullet t_d + F_{dw}^2 \bullet t_{dw}}{t_a + t_r + t_d + t_{dw}}}$$

* All calculations are given in SI units.

For English units use weight in lbs instead of mass • g.

3. Size the Motor and Amplifier

EXAMPLE:	
Moving Weight:	MI = 0.5kg
Number of Motors:	n = 1
Horizontal Move:	$\theta = 0$
Counterbalance Force:	$M_{cb} = 0$
External Force:	$F_{ext} = 0$
Friction Coefficient:	$\mu = 0.01$

Assume same move as above with a Dwell Time of 50 ms.

Run Force at Constant Speed:	$F_{r} = 0.5 \bullet 9.81 \bullet 0.0$	1=0 .05 N
Acceleration Force only:	$F_{a} = 0.5 \bullet 40$	= 20 N
Deceleration Force only:	$F_{d} = 0.5 \bullet 40$	= 20 N
Maximum Accel Force:	$F_{am} = 20 + 0.05$	= 20.05 N
Maximum Decel Force:	$F_{dm} = 20 - 0.05$	= 19.95 N
Rms Force:		

$$F_{\text{rms}} = \sqrt{\frac{(20.05)^2 \cdot (50E-3) + (19.95)^2 \cdot (50E-3)}{100E-3 + 50E-3}}$$

 $F_{rms} = 16.3 N$

Motor Sizing:

If we select an ironless motor for smoothest possible move we can use Motor IL060-30A1. This motor has a coil mass of 0.21 kg and no attractive force. By adding that weight in equations above, we need an additional Force of 0.21• 40 • 0.01= 0.084 N. So Peak Force is 20.05 + 0.08 = 28.45 N and RMS force: 23.19 N. This motor will have a safety factor of (38-23.19)•100/38 = 39%.

Sizing the Amplifier :	Units		
	SI	English	
I _a - Max. Acceleration Current	А	А	
I _r - Run Current	А	А	
I _d - Max Deceleration Current	А	А	
l _{dw} - Dwell Current	А	А	
Irms - RMS Current	А	А	
K _f - Force Constant	N/A	lbf/A	
R _m - Motor Electrical Resistance	Ohms L-L	Ohms L-L	
K _e - Back EMF Constant	Vpeak/m/s	Vpeak/in/s	
V _{bus} - Bus Voltage	VDC	VDC	
L - Electrical Inductance	H L-L	H L-L	
Max Acceleration Current:	I _a = F	am ^{/K} f	
Run Current at constant Speed:	I _r =	F _r /K _f	
Max Deceleration Current only:	$I_d = F_{dm}/K_f$		
Dwell Current:	I _{dw} =	F _{dw} /K _f	
RMS Current:	$I_{rms} = F_{rms}/K_{f}$		

DANAHER MOTION is a registered trademark of Danaher Corporation. Danaher Motion makes every attempt to ensure accuracy and reliability of the specifications in this publication. Specifications are subject to change without notice. Danaher Motion provides this information "AS IS" and es, express or implied, including, but not limited to, implied warranties of merchantability and fitness for a particular purpose. It is the responsibility of the product user to determine the suitability of this product for a specific application. @2004 Danaher Motion

633 • 3400

Web site

:

Tel

540

61

Units

BUS VOLTAGE:

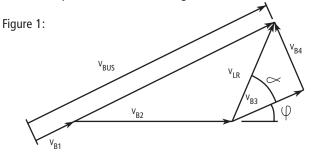
If we assume a sine wave drive with a phase advance ϕ (degrees) and full conduction, the minimum bus voltage (see Fig. 1) is:

$$V_{b1} = 2.4$$
 (Volts)

$$V_{b2} = K_e \bullet V_m$$

$$V_{b3} = 1.225 \bullet R_{m,hot} \times I_{rms}$$

 $\alpha v = ARCTANGENT (V_{b4}/V_{b3})$


$$V_{lr} = \sqrt{V_{b3}^2 + V_{b4}^2}$$

$$V_{hre} = V_{h2} + VIr \bullet COS(\alpha v + \varphi)$$

$$V_{him} = V_{lr} \bullet SIN(\alpha v + \varphi)$$

$$V_{bus} = V_{b1} + \sqrt{V_{bre^2} + V_{bim^2}}$$

Note: If there is no Phase advance take $\varphi=0^{\circ}$. Using an amplifier with Phase advance such as Kollmorgen SERVO**STAR**® gives you up to 30% more speed for same bus voltage.

THERMAL CONSIDERATIONS:

	• • • • • •	
	SI	English
$\Delta \theta$ - Coil increase of temperature	°C	°F
R _{th} - Thermal Resistance	°C/W	°F/W
K _m - Motor Constant	N/ \sqrt{W}	lbf/ \sqrt{W}
P _{out} - Output Power	W	W

Coil Temperature rise $\Delta \theta = R_{th} \bullet (F_{rms}/Km)^2$

Resistance of Coil hot (copper)

 $R_{m,hot} = \frac{R_{ambient} (234.5 + \theta_{hot})}{(234.5 + \theta_{hot})}$ Power Losses $P_{lrms} = \Delta \theta / R_{th} = \frac{(\theta_{hot} - \theta_{ambient})}{R_{th}}$

Output Power $P_{out}(max) = F_{am} \bullet V_m$

Example: In above example with:

 $R_{th} = 1.61 \text{ °C/W}$ $K_m = 4.7 \text{ N/ } \sqrt{\text{W}},$

Coil Temperature rise: $\Delta \theta = 1.61 \cdot (23.19/4.7)^2 = 39.2 \text{ °C}$ Power Losses PI = 39.2/1.61 = 24.34 Watts Max output Power P_{out}(max) = 57 Watts.

The Use of the Motor Constant K_m:

Cognizance of the heat load being generated by the linear motor is an important consideration in the application of any linear motor. Linear motors are direct drive devices, typically mounted very close to the moving load. Therefore, any heat generated by the linear motor needs to be managed to avoid affecting the process or workpiece that the moving load is carrying. The motor constant K_m is a powerful parameter that can be used to determine this heat load. K_m equals:

$$K_m = \frac{F}{\sqrt{P_c}}$$

www.DanaherMotion.com

where the RMS force F is in Newtons, the RMS heat load Pc is in watts and Km is in units of N/ \sqrt{W}

DANAHER MOTION is a registered trademark of Danaher Corporation. Danaher Motion makes every attempt to ensure accuracy and reliability of the specifications in this publication. Specifications are subject to change without notice. Danaher Motion provides this information "AS IS" and disclaims all warranties, express or implied, including, but not limited to, implied warranties of merchantability and fitness for a particular purpose. It is the responsibility of the product user to determine the suitability of this product for a specific application.

Web site :

Tel

: 540

633 • 3400

The motor constant, K_M , allows us to determine motor performance capabilities such as shown in the following two examples. In the first example, we use K_M to calculate, for a given force, how many watts of generated heat are dissipated by the motor's coil assembly. In the second, we use K_M to determine the maximum RMS force developed by the motor when the dissipated power is limited to some value.

1. An application requires a continuous thrust force of 200 Newtons. The IC11-050 ironcore motor is a good candidate, having a continuous force rating of 276 Newtons and a K_M of 32.0 N/ \sqrt{W} . Therefore, since resistance rises 1.405 times at 130°C from the ambient value at 25°C, and since resistance is the square root denominator of K_M, we must write our equation as follows,

Force =
$$\frac{K_{M}}{\sqrt{Factor}} \sqrt{Power (dissipated)}$$

200 = $\frac{32.0}{\sqrt{1.405}} \sqrt{Watts}$

Watts = 54.9

This value of watts is the power or heat generated by the motor. It is interesting to note that for the same application, a larger IC11-100 ironcore motor, with a K_M of 49.1 N/ \sqrt{W} , would dissipate only 23.3 watts for the same force, F.

2. The same application requires that no more than 45 watts are to be dissipated by the motor into the surrounding structure and environment. What is the maximum RMS force that the IC11-050 motor may produce while not exceeding this power limit?

Maximum RMS Force = $\frac{32.0}{\sqrt{1.405}}$ $\sqrt{45}$ = 181 N

Therefore, if the motor delivers no more than 181 N of thrust force on an RMS basis, then this same motor will not dissipate more than 45 watts.

Continuous Force Fc as a Function of Ambient Temperature

In our data sheets the continuous rated force Fc is the RMS force that the motor can supply continuously 100% of the time, assuming the ambient temperature is 25 degrees C and with the coils achieving a maximum temperature of 130 degrees C. At higher (or lower) ambient temperatures, the Fc of the motor must be adjusted by a factor that is determined by the following equation:

Factor =
$$\sqrt{\frac{(130 - \theta_{Amb})}{105}}$$

where $\theta_{Amb} = Ambient$ Temperature

This factor vs. ambient temperature works out as:

5 °C	10	15	20	25	30	35	40	45
1.091	1.069	1.047	1.024	1	0.976	0.951	0.926	0.900

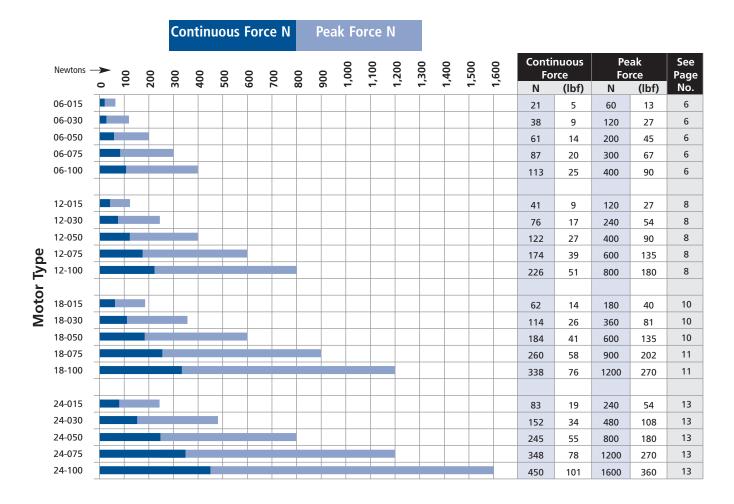
DANAHER MOTION is a registered trademark of Danaher Corporation. Danaher Motion makes every attempt to ensure accuracy and reliability of the specifications in this publication. Specifications are subject to change without notice. Danaher Motion provides this information "AS IS" and disclaims all warranties, express or implied, including, but not limited to, implied warranties of merchantability and fitness for a particular purpose. It is the responsibility of the product user to determine the suitability of this product for a specific application. @2004 Danaher Motion.

633 • 3400

Web site

:

www.DanaherMotion.com


63

Tel

oplication Sizing Worksheet	Kollmorgen PLATINUM® DI
Customer:	Project Name:
Contact:	Axis Name:
Telephone:	Prepared by:
fax:	E-Mail:
Move	
Axis Orientation	Horizontal Vertical
Typical Move	
Total Travel Length	
Typical Move Time	
Maximum Speed	
Minimum Speed	
Max. Acceleration	
or Accel/Decel Time	
Dwell Time	
Move Profile	triangular S-curve
Loads	
Friction Coefficient	
Max Load Mass	
Thrust force	
Is this thrust force present during Accel/Decel?	Yes No
Precision	
Repeatability	
Absolute Accuracy	·
Resolution	
Encoder Feedback	
Signal period	μm
Resolution	µnn lines/mm lines/in
Electronic Interpolation Yes	No If Yes, Multiplication Factor:
Environment	
Ambient Temperature	□ °C □ ° F
Max Permissible Temperature Rise	
Clean Room Environment	C I I
Is Water or Air cooling permissible?	Yes No
Vacuum?	Yes No Pressure:
Amplifier & Power Supply	
Max Voltage	
Max Current	•
Power SupplyVoltageV	
voltagev	50 Hz 60 Hz
Also see MOTIONEERING	

Web site :

Ironless Linear Motors

ICD Linear Motors

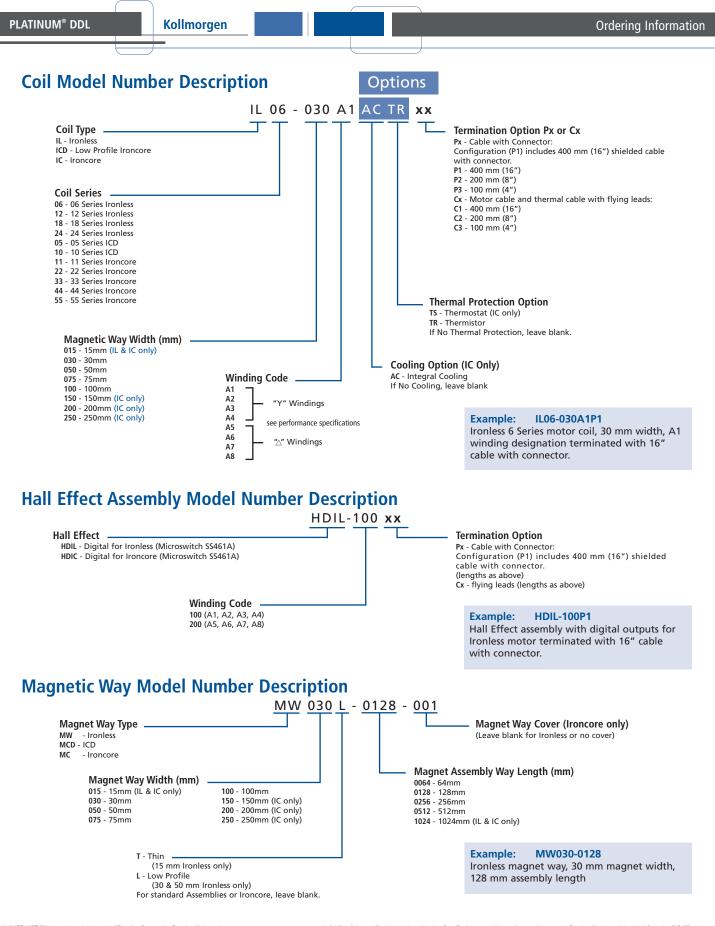
			nuous Non-Coo	Force Noled)	l Pe	eak For	e N				M	ax.			
	Newtons ->	•	200	400	600	800	1,000	1,200	1,400	1,600	Continuous Force		Peak Force		See Page
		0	5	4	0	õ	-	-`-	-`	-`-	N	(lbf)	Ν	(lbf)	No.
	ICD05-030										57	13	170	28	18
0	ICD05-050										87	20	280	63	18
,pe	ICD05-075										125	28	425	96	18
Þ	ICD05-100										157	35	550	124	18
otor															
<u>[</u>]	ICD10-030										104	23	340	76	20
Σ	ICD10-050										171	38	560	126	20
	ICD10-075										246	55	850	191	20
	ICD10-100										315	71	1130	254	20

DANAHER MOTION is a registered trademark of Danaher Corporation. Danaher Motion makes every attempt to ensure accuracy and reliability of the specifications in this publication. Specifications are subject to change without notice. Danaher Motion provides this information "AS IS" and disclaims all warranties, express or implied, including, but not limited to, implied warranties of merchantability and fitness for a particular purpose. It is the responsibility of the product user to determine the suitability of this product for a specific application. @2004 Danaher Motion.

633 • 3400

Tel : 540

Ironcore Linear Motors


		0	Cont	tinuo (Non	D US -Coo	Forc led)	e N	Cor	itinu (Wa	l ous ter-C	For ooled	ce N I)		Реа	k Fo	rce	N		М	ax.			
New	vtons -	0 ← 1,000 2,000 3,000		5,000	6,000 7,000 8,000 9,000					11,000 12,000 13,000			14,000	14,000 15,000	16,000	Conti	Continuous Force		Peak Force				
		•	-`	5	'n	4	Ω,	<u>و</u>	~	°,	6	7	÷		4	-	÷	7	Ν	(lbf)	N	(lbf)	No.
11-0	015																		73	16	190	43	25
11-0	030																		296	66	375	84	25/40
11-0	050																		502	113	625	141	25/40
11-0	075																		754	169	940	211	25/40
11-1	100																		1006	226	1250	281	25/40
11-1	150																		1490	335	1875	422	25/40
11-2	200																		1991	448	2500	562	25/40
11-2	250	_																	2410	542	3125	703	25/40
22.0		-																					
22-0		4								_						_			143	32	375	84	27
22-0																_			603	136	750	169	27/42
22-0										_						_			1005	226	1250	281	27/42
22-0		_														_			1493	336	1875	422	27/42
22-1		_				_				_						_			1995	448	2500	562	28/42
22-1		_														_			2996	674	3750	843	28/43
22-2		-								_			_			_			4023	904	5000	1124	28/43
22-2	250	-	_						_	_					_	_			4806	1080	6250	1405	28/43
33-0	015		_		_		_								_				216	49	565	127	30
33-0					_										_				896	202	1125	253	30/45
2 33-0																			1492	335	1875	422	30/45
3 3-0																			2240	504	2815	633	30/45
33-1																			3014	677	3750	843	31/46
33-0 33-0 33-1 33-1	150																		4464	1004	5625	1265	31/46
33-2	200																		5990	1347	7500	1686	31/46
33-2	250																		7216	1622	9375	2108	31/46
		+																					
44-0	015																		286	64	750	169	33
44-0	030																		1201	270	1500	337	33/48
44-0	050																		1990	446	2500	562	33/48
44-0	075																		2980	669	3750	843	33/48
44-1	100																		4015	902	5000	1124	34/48
44-1	150																		5990	1343	7500	1686	34/49
44-2	200																		8035	1806	10000	2248	34/49
44-2	250																		9620	2165	12500	2810	34/49
55-0	015																		359	81	940	211	36
55-0	030																		1497	336	1875	422	36/51
55-0	050																		2511	564	3125	703	36/51
55-0	075																		3773	848	4690	1054	37/51
55-1	100																		5001	1124	6250	1405	37/51
55-1	150																		7446	1674	9375	2108	37/52
55-2	200																		10033	2256	12500	2810	38/52
55-2	250																		12023	2703	15625	3513	38/52

DANAHER MOTION is a registered trademark of Danaher Corporation. Danaher Motion makes every attempt to ensure accuracy and reliability of the specifications in this publication. Specifications are subject to change without notice. Danaher Motion provides this information "AS IS" and disclaims all warranties, express or implied, including, but not limited to, implied warranties of merchantability and fitness for a particular purpose. It is the responsibility of the product user to determine the suitability of this product for a specific application. @2004 Danaher Motion.

Tel

: 540

633 • 3400

DANAHER MOTION is a registered trademark of Danaher Corporation. Danaher Motion makes every attempt to ensure accuracy and reliability of the specifications in this publication. Specifications are subject to change without notice. Danaher Motion provides this information "AS IS" and disclaims all warranties, express or implied, including, but not limited to, implied warranties of merchantability and fitness for a particular purpose. It is the responsibility of the product user to determine the suitability of this product for a specific application. @2004 Danaher Motion.

Tel

Find additional PLATINUM® DDL product information

DanaherMotion.com offers many new tools to help serve your needs. We've developed an inuitive Web-based system to increase your knowledge of motion control, search our vast product selection by product attribute (using our New Product Advisors), and easily locate your nearest Danaher Motion distributor or Sales office.

Visit www.DanaherMotion.com for more information and see our latest tools.

KOLLMORGEN

Solutions by DANAHER MOTION

DANAHER MOTION is a trademark.

Danaher Motion makes every attempt to ensure accuracy and reliability of the specifications in this publication. Specifications are subject to change without notice. Danaher Motion provides this information "AS IS" and disclaims all warranties, express or implied, including, but not limited to, implied warranties of merchantability and fitness for a particular purpose. It is the responsibility of the product user to determine the suitability of this product for a specific application.

©2004 Danaher Motion. IG-10K OCG/BH 1104 200406-09 N102

FOR IMMEDIATE ASSISTA	NCE:										
Internet:	www.DanaherMotion.com										
In USA, Canada	Phone:	1-540-633-3400	In Europe:	Phone:	+46 (0) 44 24 67 00						
or Mexico:	Fax:	1-540-639-4162		Fax:	+46 (0) 44 24 40 85						
	E-mail:	DMAC@danahermotion.com		E-mail:	helpdesk@tollo.com						
	Literature:	litrequest@danahermotion.com	or write:	Danaher Motion							
or write:	Danaher Motio	in		Tollo Linear AB							
	203A West Roc	k Road		Box 9053							
	Radford, VA 24	141 USA		SE-291 09 Kristianstad Sweden							
In UK:	Phone:	0800 975 1000	or	Phone:	+49 (0) 70 22 504-0						
	Sales Fax:	0800 975 1001		Fax:	+49 (0) 70 22 541-68						
	E-mail:	LMSEurope@danahermotion.com	or write:	Danaher Linear GmbH							
or write:	Danaher Linea	r Motion Systems		Nürtinger Strasse 70							
	Fishleigh Road	, Roundswell Business Park		D-72649 Wolfschlugen Germany							
	Barnstaple		Elsewhere:	Phone:	1 (516) 883-8937						
	EX31 3UD UK			Fax:	1 (516) 883-7109						
Catalogue request:	catalogues@da	anahermotion.com									